Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.11.929

Adsorption Kinetic Study of Ruthenium Complex Dyes onto TiO2 Anodes for Dye-sensitized Solar Cells (DSSCs)  

An, Byeong-Kwan (Department of Chemistry, The Catholic University of Korea)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.11, 2011 , pp. 929-934 More about this Journal
Abstract
The adsorption kinetic study of ruthenium complex, N3, onto nanoporous titanium dioxide ($TiO_2$) photoanodes has been carried out by measuring dye uptake in-situ. Three simplified kinetic models including a pseudo first-order equation, pseudo second-order equation and intraparticle diffusion equation were chosen to follow the adsorption process. Kinetic parameters, rate constant, equilibrium adsorption capacities and related coefficient coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption kinetics of N3 dye molecules onto porous $TiO_2$ obeys pseudo second-order kinetics with chemisorption being the rate determining step. Additionally the heterogeneous surface and the pore size distribution of porous $TiO_2$ adsorbents were also discussed.
Keywords
Ruthenium complexes; Titanium dioxides ($TiO_2$); Dye-sensitized solar cells (DSSCs); Adsorption kinetic models;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Ozacar and I. A. Sengil, J. Environ. Manage., 80, 372 (2006).   DOI
2 R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, and G. J. Meyer, Inorg. Chem., 33, 5741 (1994).
3 C. long, A. Li, H. Wu, and Q. Zhang, Colloid Surf. A: Physicochem. Eng. Aspects, 333, 150 (2009).   DOI
4 S. Azizian, J. Colloid Interface Sci. 302, 76 (2006).   DOI
5 A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995).   DOI
6 B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).   DOI
7 N. Robertson, Angew. Chem. Int. Ed., 45, 2338 (2006).   DOI
8 P. Xie and F. Guo, Curr. Org. Chem., 11, 1272 (2007).   DOI   ScienceOn
9 B. K. An, R. Mulherin, B. Langley, P. Burn, and P. Meredith, Org. Electron., 10, 1356 (2009).   DOI
10 M. Gratzel, Platinum Metals Rev., 38, 151 (1994).
11 B. K. An, P. L. Burn, and P. Meredith, Chem. Mater., 21, 3315 (2009).   DOI
12 F. Roncaroli and M. A. Blesa, Phys. Chem. Chem. Phys., 12, 9938 (2010).   DOI   ScienceOn
13 H. Qiu, L. Lv, B. C. Pan, Q. J. Zhang, W. M. Zhang, and Q. X. Zhang, J. Zhejiang Univ. Sci., A10, 716 (2009).
14 M. Ozacar, Adsorption, 9, 125 (2003).   DOI
15 M. Yalcin, A. Gurses, C. Dogar, and M. Sozbibir, Adsorption, 10, 339 (2004).
16 S. R. Jang, C. Lee, H. Choi, J. J. Ko, J. Lee, R. Vittal, and K. J. Kim, Chem. Mater., 18, 5604 (2006).   DOI
17 M. Ozacar and İ. A. Şengil, Colloid Surf. A: Physicochem. Eng. Aspects, 242, 105 (2004).   DOI
18 Z. Yaneva and B. Koumanova, J. Colloid Interface Sci., 293, 303 (2006).   DOI
19 Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).   DOI