Browse > Article
http://dx.doi.org/10.5322/JESI.2021.30.9.719

Removal of Cobalt Ion in Aqueous Solution Using Zeolitic Materials Synthesized from Jeju Volcanic Rocks  

Cho, Eunnim (Busan Metropolitan City Institute of Health & Environment)
Lee, Chang-Han (Department of Environmental Administration, Catholic University of Pusan)
Kim, Moon il (Department of Environmental Administration, Catholic University of Pusan)
Publication Information
Journal of Environmental Science International / v.30, no.9, 2021 , pp. 719-726 More about this Journal
Abstract
In this study, zeolitic materials were synthesized from Jeju Volcanic Rocks (JVR) using a fusion/hydrothermal method at NaOH/JVR ratios of 0.6 and 1.2. The crystallinities of the zeolitic materials at NaOH/JVR ratios of 0.6 and 1.2 were 25.5% and 59.0%, respectively. It was confirmed through the SEM image that the zeolitic materials covered the zeolite particle with a cube-shaped crystals. The Co ions adsorption by the zeolitic materials were to reach the adsorption equilibrium at 120 min. It could be better simulated in the pseudo-second order adsorption kinetic equation than in the pseudo-first order adsorption kinetic equation. The adsorption capacities (qm) of Co ions could be to estimate Langmuir isotherm better than Freundlich isotherm. The maximum adsorption capacities (qm) at NaOH/JVR ratios of 0.6 and 1.2 were 55.3 mg/g and 68.7 mg/g, respectively. It was found that there was a high correlation between the crystallinity of zeolitic materials and the adsorption capacity of Co ions adsorption.
Keywords
Adsorption; Kinetics; Volcanic rocks; Zeolitic material; Cobalt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fang, X. H., Fang, F., Lu, C. H., Zheng, L., 2017, Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites, Nucl. Eng. Technol., 49, 556-561.   DOI
2 Ha, J. C., Song, Y. J., 2015, An Investigation of awareness on the Fukushima nuclear accident and radioactive contamination, J. Rad. Prot. Res., 41, 7-14.   DOI
3 Ho, Y. S., McKay, G., 1998, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70, 115-124.   DOI
4 Hwang, D. S., Choung, Y. J., Choung, W. M., Park, J. H., Park, S. J., 2002, Precipitation separation of 99Mo by α-benzoinoxime in simulated radioactive solution, J. Kor. Ind. Eng. Chem., 13, 82-86.
5 Krishna, M. V. B., Rao, S. V., Arunachalam, J., Murali, M. S., Kumar, S., Manchanda, V. K., 2004, Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent, Sep. Purifi. Technol., 38, 149-161.   DOI
6 Lagergren, S., 1898, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39.
7 Lee, M. G., Park, J. W., Kam, S. K., Lee, C. H., 2018, Synthesis of Na-A zeolite from Jeju scoria using fusion/hyfrothermal method, Chemosphere, 207, 203-208.   DOI
8 Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr Ion by Na-A zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Int., 26, 363-371.   DOI
9 Machado, N. R. C. F., Miotto, D. M. M., 2005, Synthesis of Na-A and -X zeolites from oil shale ash. Fuel 84, 2289-2294.   DOI
10 Belova, T. P., 2019, Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite, Heliyon, 5, e02320.   DOI
11 Ozturk, B., Yildirim, Y., 2008, Investigation of sorption capacity of pumice for SO2 capture, Proc. Saf. Env. Prot., 86, 31-36.   DOI
12 Borai, E. H., Breky, M. M. E., Sayed, M. S., Abo-Aly, M. M., 2015, Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt andeuropium ions, J. Col. Int. Sci., 450, 17-25.   DOI
13 Chegrouche, S., Mellah, A., Barkat, M., 2009, Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies, Desalination, 235, 306-318.   DOI
14 Tanaka, H., Fujii, A., 2009, Effect of stirring on the dissolution of coal fly ash and synthesis of pure form Na-A and -X zeolites by two step process, Adv. Powd. Tech. 20, 473-479.   DOI
15 Moraci, N., Calabro, P. S., 2010, Heavy metals removal and hydraulic performance in zero-valent ironpumicepermeable reactive barriers, J. Env. Man., 91, 2336-2341.   DOI
16 Moradi, M., Fazlzadehdavil, M., Pirasheb, M., Monsouri, Y., Khosravi, T., Sharafi, K., 2016, Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent, Arc. Env. Prot., 42, 33-43.
17 Treacy, M. M. J., Higgins, J. B., 2001, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, Amsterdam, 214-217.
18 Roy, K., Pal, D. K., Basua, S., Nayak, D., Lahiri, S., 2002, Synthesis of a new ion exchanger, zirconium vanadate and its application to the separation of barium and cesium radionuclides at tracer levels, Appl. Radiat. Isot., 57, 471-474.   DOI
19 Sharafi, K., Pirsaheb, M., Gupta, V. K., Agarwal, S., Moradi, M., Vasseghian, Y., Dragoli, E. N., 2019, Phenol adsorption on scoria stone as adsorbent - Application of response surface method and artificial neural networks, J. Mol. Liq., 274, 699-714.   DOI
20 Singh, B. K., Tomar, R., Tomar, R., Tomar, S. S., 2011, Sorption of homologues of radionuclides by synthetic ion exchanger, Microporous Mesoporous Mater., 142, 629-640.   DOI
21 Yang, M. S., 2009, Selection of adsorbents and evaluation of basic properties for removal of ions from liquid radioactive wastes, J. Adv. Eng. Technol., 2, 189-194.
22 Yang, W. W., Luo, G. S., Gong, X. C., 2005, Extraction and separation of metal ions by a column packed with polystyrene microcapsules containing Aliquat 336, Sep. Purif. Technol., 43, 175-182.   DOI
23 Lee, C. H., Lee, M. G., 2018, Evaluation of Exchange Capacities of Ca2+ and Mg2+ ions by Na-A Zeolite Synthesized from Coal Fly Ash, J. Environ. Sci. Int., 27, 975-982.   DOI
24 Lin, Z., Yuan, P., Yue, Y., Bai, Z., Zhu, H., Wang, T., Bao, X., 2020, Selective adsorption of Co(II)/Mn(II) by zeolites from purified terephthalic acid wastewater containing dissolved aromatic organic compounds and metal ions, Sci. Total Environ., 698, 134287.   DOI
25 Yin, X., Wang, X., Wu, H., Ohnuki, T., Takeshita, K., 2017, Enhanced desorption of cesium from collapsed interlayer regions invermiculite by hydrothermal treatment with divalent cations, J. Haz. Mat., 326, 47-51.   DOI
26 Joseph, I. V., Tosheva, L., Doyle, A. M., 2020, Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash, J. Environ. Chem. Eng., 8, 103895.   DOI
27 Mahmoud, M. E., Saad, E. A., El-Khalib, A. M., Soliman, M. A., 2018, Adsorptive removal of radioactive isotopes of cobalt and zinc from waterand radioactive wastewater using TiO2/Ag2O nanoadsorbents, Prog. Nuc. Energy, 106, 51-63.   DOI
28 Kim, C. W., Kim, J. Y., Choi, J. R., Ji, P. K., Park, J. K., Shin, S. W., Ha, J. H., Song, M. J., 2004, Characteristics of vitrification process and vitrified form for radioactive waste, J. Kor. Rad. Waste Soc., 2, 175-180.