• Title/Summary/Keyword: First Korean mathematical science journal

Search Result 327, Processing Time 0.024 seconds

The Effects of Mathematics-Centered STEAM Program on Middle School Students' Interest in STEM Career and Integrated Problem Solving Ability (수학교과 중심의 STEAM 수업이 중학생들의 STEM 분야 진로 흥미도 및 융합적 문제해결력에 미치는 영향)

  • Han, Hyesook
    • Communications of Mathematical Education
    • /
    • v.31 no.1
    • /
    • pp.125-147
    • /
    • 2017
  • The purpose of this study was to investigate the effects of mathematics-centered STEAM program which was operated in free semester system classes on middle school students' interest in science, technology/engineering, and mathematics(STEM) career and integrated problem solving ability. The study was conducted with 40 first graders in a middle school for 12 weeks using mathematics-centered STEAM program developed for the use of free semester system classes by the support of the Ministry of Education/KOFAC in 2016. According to the results of STEM career interest survey, mathematics-centered STEAM program was effective for improving middle school students' interest in STEM career. And it was also effective in the development of students' integrated problem solving ability.

Mathematical Models to Describe the Kinetic Behavior of Staphylococcus aureus in Jerky

  • Ha, Jimyeong;Lee, Jeeyeon;Lee, Soomin;Kim, Sejeong;Choi, Yukyung;Oh, Hyemin;Kim, Yujin;Lee, Yewon;Seo, Yeongeun;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.371-378
    • /
    • 2019
  • The objective of this study was to develop mathematical models for describing the kinetic behavior of Staphylococcus aureus (S. aureus) in seasoned beef jerky. Seasoned beef jerky was cut into 10-g pieces. Next, 0.1 mL of S. aureus ATCC13565 was inoculated into the samples to obtain 3 Log CFU/g, and the samples were stored aerobically at $10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$ for 600 h. S. aureus cell counts were enumerated on Baird Parker agar during storage. To develop a primary model, the Weibull model was fitted to the cell count data to calculate Delta (required time for the first decimal reduction) and ${\rho}$ (shape of curves). For secondary modeling, a polynomial model was fitted to the Delta values as a function of storage temperature. To evaluate the accuracy of the model prediction, the root mean square error (RMSE) was calculated by comparing the predicted data with the observed data. The surviving S. aureus cell counts were decreased at all storage temperatures. The Delta values were longer at $10^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$ than at $30^{\circ}C$ and $35^{\circ}C$. The secondary model well-described the temperature effect on Delta with an $R^2$ value of 0.920. In validation analysis, RMSE values of 0.325 suggested that the model performance was appropriate. S. aureus in beef jerky survives for a long period at low storage temperatures and that the model developed in this study is useful for describing the kinetic behavior of S. aureus in seasoned beef jerky.

The Behavioral Characteristics of Gifted Children at Mathematics: A Case Study (수학영재아들의 행동 특성: 사례연구)

  • Park, Sung-Ok;Kang, Yun-Soo
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.4
    • /
    • pp.459-480
    • /
    • 2005
  • The purpose of this study is to understand the behavioral characteristics of gifted children at Mathematics. In order to do this, we observed 4 gifted children at mathematics as participants who are participating in education program of science education center for gifted youths in some university, and we collected related materials. As a result of analyzing materials, we found the followings: First, although the gifted children are self-confident of their mathematical talent, they don't affirm easily that they have the gifted nature. Second, the gifted children have various fields of interest. Especially, they read a mount of books. Third, they are motivating for themselves and have good moral judgment.

  • PDF

Permanent Magnet Synchronous Motor Control Algorithm Based on Stability Margin and Lyapunov Stability Analysis

  • Jie, Hongyu;Xu, Hongbing;Zheng, Yanbing;Xin, Xiaoshuai;Zheng, Gang
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1505-1514
    • /
    • 2019
  • The permanent magnet synchronous motor (PMSM) is widely used in various fields and the proportional-integral (PI) controller is popular in PMSM control systems. However, the motor parameters are usually unknown, which can lead to a complicated PI controller design and poor performance. In order to design a PI controller with good performance when the motor parameters are unknown, a control algorithm based on stability margin is proposed in this paper. First of all, based on the mathematical model of the PMSM and the least squares (LS) method, motor parameters are estimated offline. Then based on the estimation values of the motor parameters, natural angular frequency and phase margin, a PI controller is designed. Performance indices including the natural angular frequency and the phase margin are used directly to design the PI controller in this paper. Scalar functions of the d-loop and the q-loop are selected. It can be seen that the designed controller parameters satisfy Lyapunov large scale asymptotic stability theory if the natural angular frequencies of the d-loop and the q-loop are large than 0. Experimental results show that the parameter estimation method has good accuracy and the designed PI controller proposed in this paper has good static and dynamic performances.

Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

  • Porbadnigk, Anne K.;Gornitz, Nico;Kloft, Marius;Muller, Klaus-Robert
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.112-121
    • /
    • 2013
  • The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behavioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception. This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using supervised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.

Optimal Design of Nonlinear Hydraulic Engine Mount

  • Ahn Young Kong;Song Jin Dae;Yang Bo-Suk;Ahn Kyoung Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.768-777
    • /
    • 2005
  • This paper shows that the performance of a nonlinear fluid engine mount can be improved by an optimal design process. The property of a hydraulic mount with inertia track and decoupler differs according to the disturbance frequency range. Since the excitation amplitude is large at low excitation frequency range and is small at high excitation frequency range, mathematical model of the mount can be divided into two linear models. One is a low frequency model and the other is a high frequency model. The combination of the two models is very useful in the analysis of the mount and is used for the first time in the optimization of an engine mount in this paper. Normally, the design of a fluid mount is based on a trial and error approach in industry because there are many design parameters. In this study, a nonlinear mount was optimized to minimize the transmissibilities of the mount at the notch and the resonance frequencies for low and high-frequency models by a popular optimization technique of sequential quadratic programming (SQP) supported by $MATLAB^{(R)}$subroutine. The results show that the performance of the mount can be greatly improved for the low and high frequencies ranges by the optimization method.

Effects of the Polarization Resistance on Cyclic Voltammograms for an Electrochemical-Chemical Reaction

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.146-151
    • /
    • 2015
  • Here I report an electrochemical simulation work that compares voltammetric current and resistance of a complex electrochemical reaction over a potential scan. For this work, the finite element method is employed which are frequently used for voltammetry but rarely for impedance spectroscopy. Specifically, this method is used for simulation of a complex reaction where a heterogeneous faradaic reaction is followed by a homogeneous chemical reaction. By tracing the current and its polarization resistance, I learn that their relationship can be explained in terms of rate constants of charge transfer and chemical change. An unexpected observation is that even though the resistance is increased by the rate of the following chemical reaction, the current can be increased due to the potential shift of the resistance made by the proceeding faradaic reaction. This report envisions a possibility of the FEM-based resistance simulation to be applied to understand a complex electrochemical reaction. Until now, resistance simulations are mostly based on equivalent circuits or complete mathematical equations and have limitations to find proper models. However, this method is based on the first-principles, and is expected to be complementary to the other simulation methods.

Analytical solution of the Cattaneo - Vernotte equation (non-Fourier heat conduction)

  • Choi, Jae Hyuk;Yoon, Seok-Hun;Park, Seung Gyu;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.389-396
    • /
    • 2016
  • The theory of Fourier heat conduction predicts accurately the temperature profiles of a system in a non-equilibrium steady state. However, in the case of transient states at the nanoscale, its applicability is significantly limited. The limitation of the classical Fourier's theory was overcome by C. Cattaneo and P. Vernotte who developed the theory of non-Fourier heat conduction in 1958. Although this new theory has been used in various thermal science areas, it requires considerable mathematical skills for calculating analytical solutions. The aim of this study was the identification of a newer and a simpler type of solution for the hyperbolic partial differential equations of the non-Fourier heat conduction. This constitutes the first trial in a series of planned studies. By inspecting each term included in the proposed solution, the theoretical feasibility of the solution was achieved. The new analytical solution for the non-Fourier heat conduction is a simple exponential function that is compared to the existing data for justification. Although the proposed solution partially satisfies the Cattaneo-Vernotte equation, it cannot simulate a thermal wave behavior. However, the results of this study indicate that it is possible to obtain the theoretical solution of the Cattaneo-Vernotte equation by improving the form of the proposed solution.

Bourbaki and the HistorT of Mathematics (Bourbaki와 수학사)

  • Lee Seung On;Kim Tae-Soo
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.79-90
    • /
    • 2005
  • Before the First World War, French mathematicians were leading mathematical community in the world but after the war, there was a vacuum compared with Germany and England. So it was necessary to make everything new in France. Young mathematicians from Ecole Normale Superieur came together to form the Bourbaki group. Bourbaki advanced the view that mathematics is a science dealing with structures, and that it attains its results through a systematic application of the modern axiomatic method. French culture movements, especially structuralism and potential literature, including the Bourbakist endeavor, emerged together, each strengthening the public appeal of the others through constant interaction. In this paper, we investigate Bourbaki's role and their achievements in the twentieth century mathematics, and the decline of Bourbaki.

  • PDF

Optimization Studies on Water Treatment Process of Seawater Recirculation Fish Culture Systems 1. Ammonia Removal Kinetics in Seawater Using Rotating Biological Contactor Process (순환여과식 해산 어류 양식장의 수처리 공정 최적화 연구 1. 회전원판법에 의한 해수 중의 암모니아 제거 동력학)

  • CHO Young-Gae;LEE Jae-Kwan;LEE Heon-Mo;YANG Byung-Soo
    • Journal of Aquaculture
    • /
    • v.6 no.4
    • /
    • pp.311-321
    • /
    • 1993
  • Ammonia accumulation is regarded as the limiting factor of the first priority in water qualities of aquatic culture systems. Nitrification efficiency and characteristics in seawater were evaluated using Rotating Biological Contactor (RBC) process as a part of the recycling water treatment facilities for marine fish culture system. Ammonia removal efficiency regarded 99.7 to $83.7\%$ at the ammonia surface loading rates of 48 to $393 mg/m^2$ -day. RBC process was able to withstand to the fluctuation of influent ammonia concentrations and loading and produced the stable effluent. The mathematical model on the fixed-film biological reactor developed by Kornegay seemed to be suitable to RBC process kinetic evaluation for the recycling water treatment of the marine fish culture system. Area capacity constant (P) and half-velocity constant (Ks) in the model were 0.188g/m^2$-day and 1.25mg/l, respectively.

  • PDF