Browse > Article
http://dx.doi.org/10.5229/JECST.2015.6.4.146

Effects of the Polarization Resistance on Cyclic Voltammograms for an Electrochemical-Chemical Reaction  

Chang, Byoung-Yong (Department of Chemistry, Pukyong National University)
Publication Information
Journal of Electrochemical Science and Technology / v.6, no.4, 2015 , pp. 146-151 More about this Journal
Abstract
Here I report an electrochemical simulation work that compares voltammetric current and resistance of a complex electrochemical reaction over a potential scan. For this work, the finite element method is employed which are frequently used for voltammetry but rarely for impedance spectroscopy. Specifically, this method is used for simulation of a complex reaction where a heterogeneous faradaic reaction is followed by a homogeneous chemical reaction. By tracing the current and its polarization resistance, I learn that their relationship can be explained in terms of rate constants of charge transfer and chemical change. An unexpected observation is that even though the resistance is increased by the rate of the following chemical reaction, the current can be increased due to the potential shift of the resistance made by the proceeding faradaic reaction. This report envisions a possibility of the FEM-based resistance simulation to be applied to understand a complex electrochemical reaction. Until now, resistance simulations are mostly based on equivalent circuits or complete mathematical equations and have limitations to find proper models. However, this method is based on the first-principles, and is expected to be complementary to the other simulation methods.
Keywords
impedance spectroscopy; electrochemistry theory; finite element simulation; electrochemical-chemical reaction;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 A.J. Bard and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2002).
2 T.N. Osaka, Hiroki; Mukoyama, Daikichi; Yokoshima, Tokihiko, J. Electrochem. Sci. Technol. 4, 157-162 (2013).   DOI
3 B.-Y. Chang and S.-M. Park, Annu. Rev. Anal. Chem. 3, 207-229 (2010).   DOI
4 E. Barsoukov and J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. 2ed. Wiley-Interscience, (2005).
5 R. Jurczakowski and P. Po³czyñski, J. Phys. Chem. C 118, 7980-7988 (2014).   DOI
6 N. Xu and D.J. Riley, Electrochim. Acta 94, 206-213 (2013).   DOI
7 B.-Y. Chang and S.-M. Park, Anal. Chem. 78, 1052-1060 (2006).   DOI
8 B.-Y. Chang, J. Korean Electrochem. Soc. 17, 119-123 (2014).   DOI
9 B.-Y. Chang and S.-M. Park, J. Phys. Chem. C 116, 18270-18277 (2012).   DOI
10 J. Song, Z. Hong, A. Koh and W. Shin, J. Electrochem. Sci. Technol. 5, 19-22 (2014).   DOI
11 M. Rudolph, D.P. Reddy and S.W. Feldberg, Anal. Chem. 66, 589A-600A (1994).   DOI
12 H. Cho and D.-Y. Yoon, J. Korean Electrochem. Soc. 16, 217-224 (2013).   DOI
13 A. Lasia, Electrochemical Impedance Spectroscopy and its applications. In Modern Aspects of Electrochemistry, White, R. E.; Conway, B. E.; Bockris, J. O. M., Eds. Plenum Press: New York, 1999; Vol. 32.
14 J.G. Limon-Petersen, J.T. Han, N.V. Rees, E.J.F. Dickinson, I. Streeter and R.G. Compton, J. Phys. Chem. C 114, 2227-2236 (2010).
15 D.J. Gavaghan and S.W. Feldberg, J. Electroanal. Chem. 491, 103-110 (2000).   DOI
16 K.-M. Nam and B.-Y. Chang, J. Electrochem. Soc. 161, H379-H383 (2014).   DOI
17 D.K. Gosser, Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms. Wiley-VCH, New York (1993).
18 I. Streeter and R.G. Compton, J. Phys. Chem. C 112, 13716-13728 (2008).   DOI
19 P. Delahay and G. Mamantov, Anal. Chem. 27, 478-483 (1955).   DOI