DOI QR코드

DOI QR Code

Decoding Brain States during Auditory Perception by Supervising Unsupervised Learning

  • Porbadnigk, Anne K. (Machine Learning Laboratory, Berlin Institute of Technology, Berlin, and DFG Research Training Group 'Sensory Computation in Neural Systems') ;
  • Gornitz, Nico (Machine Learning Laboratory, Berlin Institute of Technology) ;
  • Kloft, Marius (Courant Institute of Mathematical Sciences, New York, and Memorial Sloan-Kettering Cancer Center) ;
  • Muller, Klaus-Robert (Machine Learning Laboratory, Berlin Institute of Technology, Department of Brain and Cognitive Engineering, Korea University)
  • Received : 2013.04.26
  • Accepted : 2013.05.08
  • Published : 2013.06.30

Abstract

The last years have seen a rise of interest in using electroencephalography-based brain computer interfacing methodology for investigating non-medical questions, beyond the purpose of communication and control. One of these novel applications is to examine how signal quality is being processed neurally, which is of particular interest for industry, besides providing neuroscientific insights. As for most behavioral experiments in the neurosciences, the assessment of a given stimulus by a subject is required. Based on an EEG study on speech quality of phonemes, we will first discuss the information contained in the neural correlate of this judgement. Typically, this is done by analyzing the data along behavioral responses/labels. However, participants in such complex experiments often guess at the threshold of perception. This leads to labels that are only partly correct, and oftentimes random, which is a problematic scenario for using supervised learning. Therefore, we propose a novel supervised-unsupervised learning scheme, which aims to differentiate true labels from random ones in a data-driven way. We show that this approach provides a more crisp view of the brain states that experimenters are looking for, besides discovering additional brain states to which the classical analysis is blind.

Keywords

References

  1. J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain-computer interfaces for communication and control," Clinical Neurophysiology, vol. 113, no. 6, pp. 767-791, 2002. https://doi.org/10.1016/S1388-2457(02)00057-3
  2. A. Kübler and K. R. Müller, "An introduction to brain computer interfacing," in Toward Brain-Computer Interfacing, G. Dornhege, J. del R. Millan, T. Hinterberger, D. McFarland, and K. R. Müller, Editors, Cambridge, MA: MIT Press, 2007, pp. 1-25.
  3. G. Dornhege, M. Krauledat, K. R. Muller, and B. Blankertz, "General signal processing and machine learning tools for BCI," in Toward Brain-Computer Interfacing, G. Dornhege, J. del R. Millan, T. Hinterberger, D. McFarland, and K. R. Muller, Editors, Cambridge, MA: MIT Press, 2007, pp. 207-234.
  4. B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli, S. Haufe, C. Maeder, L. E. Ramsey, I. Sturm, G. Curio, and K. R. Müller, "The berlin brain-computer interface: nonmedical uses of BCI technology," Front Neuroscience, vol. 4, pp. 198, 2010.
  5. A. K. Porbadnigk, M. S. Treder, B. Blankertz, J. N. Antons, R. Schleicher, S. Möller, G. Curio, and K. R. Müller, "Single- trial analysis of the neural correlates of speech quality perception," Journal of Neural Engineering, 2013, submitted to publication.
  6. K. R. Müller, M. Tangermann, G. Dornhege, M. Krauledat, G. Curio, and B. Blankertz, "Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring," Journal of Neuroscience Methods, vol. 167, no. 1, pp. 82-90, 2008. https://doi.org/10.1016/j.jneumeth.2007.09.022
  7. A. K. Porbadnigk, S. Scholler, B. Blankertz, A. Ritz, M. Born, R. Scholl, K. R. Müller, G. Curio, and M. S. Treder, "Revealing the neural response to imperceptible peripheral flicker with machine learning," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, 2011, pp. 3692-3695.
  8. S. Scholler, S. Bosse, M. S. Treder, B. Blankertz, G. Curio, K. R. Müller, and T. Wiegand, "Towards a direct measure of video quality perception using EEG," IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2619-2629, 2012. https://doi.org/10.1109/TIP.2012.2187672
  9. A. K. Porbadnigk, J. N. Antons, M. S. Treder, B. Blankertz, R. Schleicher, S. Möller, and G. Curio, "ERP assessment of word processing under broadcast bit rate limitations," Neuroscience Letters, vol. 500, suppl. 1, p. e49, 2011.
  10. J. N. Antons, R. Schleicher, S. Arndt, S. Möller, A. K. Porbadnigk, and G. Curio, "Analyzing speech quality perception using electro-encephalography," IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 6, pp. 721- 731, 2012. https://doi.org/10.1109/JSTSP.2012.2191936
  11. B. Blankertz, F. Losch, M. Krauledat, G. Dornhege, G. Curio, and K. R. Müller, "The berlin brain-computer interface: accurate performance from first-session in BCI-naive subjects," IEEE Transactions on Bio-medical Engineering, vol. 55, no. 10, pp. 2452-2462, 2008. https://doi.org/10.1109/TBME.2008.923152
  12. B. Blankertz, S. Lemm, M. S. Treder, S. Haufe, and K. R. Muller, "Single-trial analysis and classification of ERP components: a tutorial," Neuroimage, vol. 56, no. 2, pp. 814-825, 2011. https://doi.org/10.1016/j.neuroimage.2010.06.048
  13. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Müller, "Optimizing spatial filters for robust EEG single-trial analysis," IEEE Signal Process Magazine, vol. 25, no. 1, pp. 41-56, 2008.
  14. B. Blankertz, G. Dornhege, M. Krauledat, K. R. Müller, and G. Curio, "The non-invasive berlin brain-computer interface: fast acquisition of effective performance in untrained subjects," Neuroimage, vol. 37, no. 2, pp. 539-550, 2007. https://doi.org/10.1016/j.neuroimage.2007.01.051
  15. B. Blankertz, G. Curio, and K. R. Muller, "Classifying single trial EEG: towards brain computer interfacing," In Advances in Neural Information Processing Systems, T. G. Diettrich, S. Becker, and Z. Ghahramani, Editors, Cambridge, MA: MIT Press, 2002, pp. 157-164.
  16. S. Lemm, B. Blankertz, T. Dickhaus, and K. R. Muller, "Introduction to machine learning for brain imaging," Neuroimage, vol. 56, no. 2, pp. 387-399, 2011. https://doi.org/10.1016/j.neuroimage.2010.11.004
  17. A. K. Porbadnigk, J. N. Antons, B. Blankertz, M. S. Treder, R. Schleicher, S. Möller, and G. Curio, "Using ERPs for assessing the (sub)conscious perception of noise," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 2010, pp. 2690-2693.
  18. International Telecommunication Union, "ITUR Recommendation P.810: modulated noise reference unit (MNRU)," 1996.
  19. S. Sutton, M. Braren, J. Zubin, and E. John, "Evoked-potential correlates of stimulus uncertainty," Science, vol. 150, no. 3700, pp. 1187-1188, 1965. https://doi.org/10.1126/science.150.3700.1187
  20. V. Vapnik, The Nature of Statistical Learning Theory, New York, NY: Springer, 1995.
  21. K. R. Müller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, "An introduction to kernel-based learning algorithms," IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 181-201, 2001. https://doi.org/10.1109/72.914517
  22. G. Montavon, M. Braun, T. Krueger, and K. R. Müller, "Analyzing local structure in kernel-based learning: explanation, complexity and reliability assessment," IEEE Signal Processing Magazine, 2013, submitted to publication.
  23. W. Polonik, "Measuring mass concentration and estimating density contour clusters: an excess mass approach," Annals of Statistics, vol. 23, no. 3, pp. 855-881, 1995. https://doi.org/10.1214/aos/1176324626
  24. B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, "Estimating the support of a high-dimensional distribution," Neural Computation, vol. 13, no. 7, pp. 1443-1471, 2001. https://doi.org/10.1162/089976601750264965
  25. C. Cortes and V. Vapnik, "Support vector networks," Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
  26. S. Mika, G. Ratsch, and K. R. Müller, "A mathematical programming approach to the kernel fisher algorithm," in Advances in Neural Information Processing Systems, T. Leen, T. Dietterich, and V. Tresp, Editors, Cambridge, MA: MIT Press, 2001, pp. 591-597.
  27. K. R. Müller, C. W. Anderson, and G. E. Birch, "Linear and non-linear methods for brain-computer interfaces," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 165-169, 2003. https://doi.org/10.1109/TNSRE.2003.814484
  28. P. von Bunau, F. C. Meinecke, F. Kiraly, and K. R. Muller, "Finding stationary subspaces in multivariate time series," Physical Review Letters, vol. 103, no. 21, pp. 214101, 2009. https://doi.org/10.1103/PhysRevLett.103.214101
  29. P. Shenoy, M. Krauledat, B. Blankertz, R. P. N. Rao, and K. R. Müller, "Towards adaptive classification for BCI," Journal of Neural Engineering, vol. 3, no. 1, pp. R13-R23, 2006. https://doi.org/10.1088/1741-2560/3/1/R02
  30. C. Vidaurre, C. Sannelli, K. R. Muller, and B. Blankertz, "Machine-learning based co-adaptive calibration," Neural Computation, vol. 23, no. 3, pp. 791-816, 2011. https://doi.org/10.1162/NECO_a_00089
  31. C. Sannelli, M. Braun, and K. R. Müller, "Improving BCI performance by task-related trial pruning," Neural Networks, vol. 22, no. 9, pp. 1295-1304, 2009. https://doi.org/10.1016/j.neunet.2009.08.006

Cited by

  1. Extracting latent brain states — Towards true labels in cognitive neuroscience experiments vol.120, 2015, https://doi.org/10.1016/j.neuroimage.2015.05.078
  2. EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs) vol.12, pp.2, 2015, https://doi.org/10.1088/1741-2560/12/2/026012