
1505           

 
 https://doi.org/10.6113/JPE.2019.19.6.1505 

ISSN(Print): 1598-2092 / ISSN(Online): 2093-4718 

 

JPE 19-6-16 

Journal of Power Electronics, Vol. 19, No. 6, pp. 1505-1514, November 2019 

Permanent Magnet Synchronous Motor Control 
Algorithm Based on Stability Margin and Lyapunov 

Stability Analysis 
 

Hongyu Jie†, Hongbing Xu*, Yanbing Zheng*, Xiaoshuai Xin*, and Gang Zheng* 
 

†,*School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China 
  

 
Abstract 

 

The permanent magnet synchronous motor (PMSM) is widely used in various fields and the proportional-integral (PI) 
controller is popular in PMSM control systems. However, the motor parameters are usually unknown, which can lead to a 
complicated PI controller design and poor performance. In order to design a PI controller with good performance when the motor 
parameters are unknown, a control algorithm based on stability margin is proposed in this paper. First of all, based on the 
mathematical model of the PMSM and the least squares (LS) method, motor parameters are estimated offline. Then based on the 
estimation values of the motor parameters, natural angular frequency and phase margin, a PI controller is designed. Performance 
indices including the natural angular frequency and the phase margin are used directly to design the PI controller in this paper. 
Scalar functions of the d-loop and the q-loop are selected. It can be seen that the designed controller parameters satisfy Lyapunov 
large scale asymptotic stability theory if the natural angular frequencies of the d-loop and the q-loop are large than 0. 
Experimental results show that the parameter estimation method has good accuracy and the designed PI controller proposed in 
this paper has good static and dynamic performances. 

 

Key words: Least squares, Natural angular frequency, Parameter estimation, Permanent magnet synchronous motor, Phase margin, 
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I. INTRODUCTION 

Due to its advantages, including simple structure, small 
volume, high power density, high efficiency, high reliability, 
and rapid response, the PMSM has been widely used in 
various fields such as electric vehicles, industrial control, 
consumer electronics, etc. [1]. Moreover, for PMSM control 
systems, there is no doubt that the classical PI control 
algorithm is still popular due to its simple structure and high 
reliability [2]. In addition, the vector control (VC) strategy is 
still important since it possesses the characteristics of 
accurate torque control, wide speed range and rapid response 
[3]. However, the motor parameters are usually unknown, 
which can lead to a complicated PI controller design and poor 
performance. Thus, a method to design a PI controller with 

good performance when the motor parameters are unknown 
has become a key issue in PMSM control. 

Some work has already been done to design the PI 
controllers of the PMSM. Manipulation tuning is a frequently- 
used method to design PI control parameters. However, a lot 
of time and effort are needed to regulate the PI control 
parameters to obtain good performance [4]. In addition to the 
manipulation tuning method, the BODE diagram method [5], 
relay feedback method [6] and Ziegler-Nichols engineering 
method [7], [8], have also been used to design PI control 
parameters. However, a lot of experiments and experience are 
needed in these methods. Meanwhile, an unstable control 
effect may occur during experiments. In addition, some 
intelligent algorithms such as the neural networks method [9], 
[10], genetic algorithm [11], [12], fuzzy logic method [13], 
[14], artificial bee colony algorithm [15], co-efficient diagram 
method [16] and improved just-in-time learning technique 
[17], [18] have been used to implement the design of PI 
control parameters. The adaptability and robustness of systems 
have been improved through these methods. However, these 
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methods are complicated and have high hardware performance 
requirements. 

Some work has also been done to estimate the parameters 
of the PMSM. In [19], [20], the model reference adaptive 
scheme (MRAS) is presented to estimate PMSM’s parameters. 
However, extensive experience and multiple experiments are 
required in this approach. In [21], [22], the extended Kalman 
filter (EKF) method is presented to estimate the PMSM’s 
parameters. The EKF method can avoid the problem of noise 
sensitivity and simultaneously estimate the states and 
parameters. However, it contains some matrix inversion 
operations, which require a lot of calculations. In [23], [24], 
the neural network method is applied to estimate the 
parameters of PMSM. However, this method cannot guarantee 
its own stability and the convergence of the estimation values. 
In [25], Popov’s stability criterion is applied to estimate 
PMSM’s parameters and the estimation values are accurate. 
In [26], an evolution algorithm based on immune particle 
swarm optimization (PSO) is proposed to estimate the 
parameters of PMSM. However, this method is complicated 
in design and implementation. In [27]-[29], the least squares 
(LS) method is applied to estimated PMSM’s parameters. 
This method is easy to implement in terms of its program and 
it is accurate, which makes it useful for the parameter 
estimation in this paper. 

In order to design a PI controller with good performance 
when the motor parameters are unknown, a control algorithm 
based on stability margin is proposed in this paper. First of all, 
based on the mathematical model of the PMSM and the LS 
method, motor parameters are estimated offline. Then based 
on the estimated values of the motor parameters, natural 
angular frequency and phase margin, a PI controller is 
designed. Performance indices including the natural angular 
frequency and phase margin are directly used to design the PI 
controller in this paper. 

This paper is organized as follows. The VC mathematical 
model of the PMSM is presented in Section II. In addition, 
the control laws of the d-loop and the q-loop of the PMSM 
VC system based on the stability margin are obtained in this 
section. Parameter estimation of the PMSM is presented in 
Section III. At the same time, according to the estimation 
values, the final control laws of the d-loop and the q-loop of 
the PMSM VC system are obtained in this section. The 
Lyapunov stability analysis is presented in Section IV. 
Experimental results are shown in Section V. Finally, some 
conclusions are given in Section VI. 

 

II. VC MATHEMATICAL MODEL OF THE PMSM 

The armature circuit of the three-phase AC PMSM is 
usually equivalent to a first order inertial element with a 
stator resistance (Rs) and a stator inductance. Thus, the 
transfer functions of the d-loop and the q-loop of the PMSM  

 
Fig. 1. Block diagram of the PMSM VC system. 

 

 
Fig. 2. Structure diagram of the PMSM VC system. 
 
with respect to d-q coordinate can be described as is shown in 
equations (1) and (2). 

              (1) 

               (2) 

where ud and uq are the voltages of the d-loop and the q-loop; 
id and iq are the currents of the d-loop and the q-loop; and Ld 
and Lq are the inductances of the d-loop and the q-loop, 
respectively. 

Generally, a PI controller is adopted to regulate the current 
of the d-loop and the q-loop. The block diagram of the 
PMSM VC system is presented in Fig. 1. 

In Fig. 1, Te
* is the expected electromagnetic torque; id

* and 
iq

* are the expected currents of the d-loop of the q-loop; uα 
and uβ are the voltages of the α-axis and the β-axis; iα and iβ 
are the currents of the α-axis and the β-axis; Vdc is the voltage 
of the DC bus; iA, iB and iC are the currents of A-axis, B-axis 
and C-axis; θ is the electrical angle; ω is the speed; ACR_d is the 
d-loop PI controller; and ACR_q is the q-loop PI controller. 

In Fig. 1, the delay generated by the inverter (the control 
period of inverter) is usually in the microsecond range. 
However, the time constant of the PMSM is in the millisecond 
range and is much larger than the delay generated by the 
inverter. According to the control theory, the link with this 
small time constant can be ignored when the mathematical 
model is established. Thus, the delay generated by the inverter 
is ignored in this paper. Then, in terms of the VC principle, 
the structure diagram of the PMSM VC system is presented 
in Fig. 2. 

The transfer functions of the d-loop PI controller and the 
q-loop PI controller are shown in equation (3) and equation 
(4), respectively. 
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              (3) 

              (4) 

where Kp_d is the proportion factor of the d-loop PI controller; 
Ki_d is the integral factor of the d-loop PI controller; Kp_q is 
the proportion factor of the q-loop PI controller; Ki_q is the 
integral factor of the q-loop PI controller. 

Based on equations (1), (2), (3) and (4), the closed-loop 
transfer functions of the d-loop and the q-loop are obtained as 
is shown in equations (5) and (6), respectively. 

      (5) 

      (6) 

Obviously, according to equations (5) and (6), the d-loop 
and the q-loop are changed into a second order element. In 
addition, the closed-loop characteristic formula of a typical 
second order system is presented as is shown in equation (7). 

               (7) 

where ζ is damping coefficient; and ωn is natural angular 
frequency. 

According to the coefficient comparison method, the 
coefficient of the term of s between equation (5) and equation 
(7) should be equal, and the constant term should be equal, 
which is the same as equation (6) and equation (7). This can 
be explained in detail, as is shown in equations (8) through 
(11). 

               (8) 

                   (9) 

              (10) 

                  (11) 

where ζd and ζq are the damping coefficients of the d-loop and 
the d-loop; and ωnd and ωnq are the natural angular 
frequencies of the d-loop and the q-loop, respectively. 

In this paper, system performance indices including the 
natural angular frequency and phase margin of the d-loop, 
and the natural angular frequency and phase margin of the 
q-loop are selected as is shown in equations (12) through 
(15). 

             (12) 

             (13) 

           (14) 

           (15) 

where ωcd and ωcq are the cut-off frequencies of the d-loop 
and the q-loop; and γd and γq are the phase margins of the 
d-loop and the q-loop, respectively. 

The calculation equations of ωcd and ωcq are obtained as is 
shown in equations (16) and (17), respectively. 

           (16) 

           (17) 

According to equations (8) through (17), the calculation 
equations of the PI controller parameters of the d-loop and 
the q-loop can be obtained as is shown in equations (18) 
through (21). 

         (18) 

               (19) 

         (20) 

               (21) 

Therefore, the control laws of the d-loop and the q-loop are 
shown in equations (22) and (23), respectively. 

     (22) 

     (23) 

where Δed is the current deviation of the d-loop; and Δeq is 
the current deviation of the q-loop. 

 

III. PARAMETER ESTIMATION OF THE PMSM 

It is assumed that harmonics, iron consumption, hysteresis 
loss and eddy current loss are not taken into account. 

Thus, the steady-state mathematical model of the PMSM 
with respect to the d-q coordinate can be described as is 
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shown in equation (24). 

            (24) 

where ωe is the electrical angular velocity; and ψf is the magnet 
flux linkage. 

From equation (24), the calculation equations of Lq and Ld 
can be obtained as is shown in equations (25) and (26), 
respectively. 

                  (25) 

               (26) 

Generally, a digital signal processor is applied to 
implement PMSM control. From equations (25) and (26), the 
calculation equations of Lq and Ld can be expressed as is 
shown in equations (27) and (28), respectively. 

             (27) 

         (28) 

where Lq(k) and Ld(k) are the estimation values through the 
k-th samples; uq(k), ud(k), iq(k), id(k) and ωe(k) are the k-th 
samples of uq, ud, iq, id and ωe, respectively. 

However, some influences such as sampling error can lead 
to a big error between the estimation value of Lq and the real 
value of Lq, which is the same as Ld. As a result, the LS 
method is applied in this paper to make the estimation values 
more accurate. 

Denote: 

                (29) 

                (30) 

where εd(k) is defined as εd(k)=Ld(k)-Ld; and εq(k) is defined 

as εq(k)=Lq(k)-Lq. 

Since the theory of LS is to find a value of  to 

minimize Jd and to find a value of  to minimize Jq, the 

partial derivative of Jd with respect to Ld and the partial 
derivative of Jq with respect to Lq could be obtained. 
Furthermore, the partial derivatives of Jd and Jq should be set 
to 0. Thus, the minimum Jd and Jq could be obtained when 

 and , as is shown in equations (31) and (32), 

respectively. 

        (31) 

        (32) 

In conclusion,  and can be expressed as is shown in 

equations (33) and (34), respectively. 

                  (33) 

                  (34) 

According to equations (18) through (21) and equations 
(33) through (34), the calculation equations of the PI 
controller parameters of the d-loop and the q-loop can be 
obtained as is shown in equations (35) through (38). 

     (35) 

            (36) 

     (37) 

            (38) 

Finally, the control laws of the d-loop and the q-loop of the 
PMSM VC system are shown in equations (39) and (40), 
respectively. 

   (39) 

   (40) 

 

IV. ANALYSIS OF STABILITY 

Some preconditions are shown in equation (41) before the 
stability analysis. 
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            (41) 

The stability in this paper is divided into the stability of the 
d-loop and the stability of the q-loop, and they both need to 
be proven. The analyses of the stability between the d-loop 
and the q-loop are similar. The stability of the d-loop is 
proven as below. 

The closed-loop transfer function of the d-loop can be 
expressed as is shown in equation (42). 

   (42) 

The state vector xd is defined as is shown in equation (43), 
and the conditions which need to be satisfied by the state 
variables are shown in equation (44). Xd is the state space of 
the d-loop. 

             (43) 

     (44) 

Based on equations (42) and (44),  and yd are obtained 

as is shown in equations (45) and (46), respectively. 

        (45) 

            (46) 

where rd is the inverse Laplace transformation of Rd(s); and yd 
is the inverse Laplace transformation of Yd(s). 

According to equations (44) through (46), the state equation 
of the d-loop, the homogeneous state equation of the d-loop 
and the output equation of the d-loop can be obtained as is 
shown in equations (47), (48) and (49), respectively. 

    (47) 

       (48) 

             (49) 

Equilibrium states can be obtained when the homogeneous 
state equation is set to [0,0]T for all future times. Let: 

     (50) 

Form equation (50), equation (51) can be obtained. 

       (51) 

It is obvious that xd1 = 0 and xd2 = 0. Thus, the equilibrium 
state of the d-loop is 0 and unique.  

Lemma: 
Lyapunov large scale asymptotic stability theory: xe is the 

equilibrium state. If there exists a scalar function V(x) in the 
whole state space of X where: 

(i)  and  are continuous. 

(ii)  is positive definite. 

(iii)  is negative semi-definite. 

(iiii) For ,  is true. 

(iiiii) . 

Then system achieves large scale asymptotic stability at the 
equilibrium state. 

Firstly, a continuous scalar function  is selected as 

is shown in equation (52). Equation (19) is brought into 
equation (52). Then  can be expressed as is shown in 

equation (53).  

             (52) 

             (53) 

Thus,  is continuous and positive definite. 

Secondly, the partial derivative of  with respect to t 

can be obtained.  is available and continuous as is 

shown in equation (54). 

          (54) 

Equations (18) and (48) are brought into equation (54). 
Then  can be expressed as is shown in equation (55). 

    (55) 
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Thus,  is available, continuous and negative 

semi-definite. 

Thirdly, for , assume that  and 

 are true. 

According to equation (55), if  is true,  

is true. 

If  is true,  is true. 

According to equations (50) and (51), if  and 

are true,  is true. 

It is contradictory between and the 

assumption. 
Thus, for ,  is true. 

Fourthly, the condition shown in equation (56) is satisfied 
in equation (53). 

  (56) 

Based on the Lyapunov large scale asymptotic stability 
theory, the d-loop achieves large scale asymptotic stability at 
the equilibrium state. 

According to an analysis of the stability of the d-loop, the 
state vector xq for the q-loop is defined as is shown in 
equation (57), and Xq is the state space of the q-loop. 

              (57) 

The state equation of the q-loop, the homogeneous state 
equation of the q-loop and the output equation of the q-loop 
can be obtained as is shown in equations (58), (59) and (60), 
respectively. 

    (58) 

       (59) 

            (60) 

The equilibrium state of the q-loop is 0 and unique. 
 is selected for the q-loop as is shown in equation 

(61). Equation (21) is brought into equation (61). Then 
 can be expressed as is shown in equation (62). 

            (61) 

            (62) 

Thus,  is continuous and positive definite. 

The partial derivative of  with respect to t can be 

obtained.  can be expressed as is shown in equation  

TABLE I 
PARAMETERS OF THE PMSM 

Rated voltage 
Rated power 
Rated torque 
Rated speed 
Rated current 
Number of pole-pairs 
Maximum power 
Maximum torque 
Maximum speed 
Stator resistance 

345 V 
30 kW 
82 N·m 
3500 rpm 
125 A 
4 
60 kW 
180 N·m 
8000 rpm 
0.025109Ω 

 
(63).  is available, continuous and negative semi- 

definite. 

   (63) 

For ,  is true. 

is true. 

Based on the Lyapunov large scale asymptotic stability 
theory, the q-loop achieves large scale asymptotic stability at 
the equilibrium state. 

 

V. EXPERIMENTAL RESULTS 

A. Experiment Platform 

A 30kW PMSM is adopted for a number of experiments, 
and some of the parameters are shown in Table I. The 
effectiveness of the proposed method is verified on the 
experimental bench of the PMSM drive system, as is shown 
in Fig. 3. 

B. Parameter Estimation of Ld and Lq 

The estimation values of Ld and Lq of the PMSM are shown 
in Fig. 4. 

With an increase of estimation times, the mean and 
variance values of Ld and Lq are calculated, as is shown in 
Fig. 5. 

From Fig. 4 and Fig. 5, it can be seen that the estimation 
value of Lq is about 0.9414mH and that the estimation value 
of Ld is about 0.3163mH. Furthermore, even with an increase 
of the estimation times, the mean values of the estimation 
values of Ld and Lq tend to converge, and the variance values 
of the estimation values of Ld and Lq are about 0 and also tend 
to converge. Therefore, it is easy to make a judgment that the 
estimation values are equal to the real value. 
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Fig. 3. Experimental bench of the PMSM drive system. 

 

 
Fig. 4. Estimation values of Ld and Lq. (a) Estimation values of 
Ld. (b) Estimation values of Lq. 

 

 
Fig. 5. Mean and variance values of Ld and Lq. (a) Mean value of 
Ld. (b) Mean value of Lq. (c) Variance value of Ld. (d) Variance 
value of Lq. 

C. Parameter Design of PI Controller 

In this paper, according to the results of the Lyapunov 
stability analysis, the effects of the phase margin on the 
stability and response speed and the results of the modal 
analysis, the natural angular frequency of the d-loop is 
selected as ωnd=254rad/s; the phase margin of the d-loop is 
selected as γd=1.51rad; the natural angular frequency of the 
q-loop is selected as ωnq=423rad/s; and the phase margin of 
the q-loop is selected as γq=1.55rad. Then according to 
equations (35) through (38), the design results of the PI 
controller parameters are: Kp_d=0.9085, Ki_d=56.4835, 
Kp_q=0.9248, and Ki_q=56.5416. Thus, the experiments on 
different work conditions are finished. 

In condition 1, the PMSM is operated in the rated speed  

 
Fig. 6. Results in condition 1. (a) id. (b) iq. (c) Torque. (d) Speed. 

 

 
Fig. 7. Results in condition 2. (a) id. (b) iq. (c) Torque. (d) Speed. 

 
and rated power condition. That is to say, the rated speed is 
3500rpm and the rated power is 30kW. The results of this 
condition are shown in Fig. 6. It can be seen that the 
fluctuation range of the real id is ±12.7A; the fluctuation 
range of the real iq is ±3.8A; the fluctuation range of the 
torque is ±3.8N·m; and the fluctuation range of the speed is 
±2.6rpm. Thus, the fluctuations are small in the real id, real iq, 
torque and speed. That is to say, there is good static 
performance in condition 1. 

In condition 2, the PMSM is operated in the rated speed 
and maximum power condition. That is to say, the rated 
speed is 3500rpm; and maximum power is 60kW. The results 
of this condition are shown in Fig. 7. It can be seen that the 
fluctuation range of the real id is ±23A; the fluctuation range 
of the real iq is ±15.8A; the fluctuation range of the torque is 
±8N·m; and the fluctuation range of the speed is ±2.5rpm. 
Thus, the fluctuations are small in the real id, real iq, torque 
and speed. That is to say, there is good static performance in 
condition 2. 

In condition 3, the PMSM is operated in the maximum 
speed and rated power condition. That is to say, the maximum 
speed is 8000rpm; and the rated power is 30kW. The results 
of this condition are shown in Fig. 8. It can be seen that the 
fluctuation range of the real id is ±27.83A; the fluctuation 
range of the real iq is ±18.65A; the fluctuation range of the 
torque is ±4.2N·m; and the fluctuation range of the speed is 
±4.4rpm. Thus, the fluctuations are small in the real id, real iq,  
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Fig. 8. Results in condition 3. (a) id. (b) iq. (c) Torque. (d) Speed. 
 

 
Fig. 9. Results in condition 4. (a) id. (b) iq. (c) Torque. (d) Speed. 
 
torque and speed. That is to say, there is good static 
performance in condition 3. 

In condition 4, the PMSM is operated in the maximum 
speed and maximum power condition. That is to say, the 
maximum speed is 8000rpm; and the maximum power is 
60kW. The results of this condition are shown in Fig. 9. It 
can be seen that the fluctuation range of the real id is ±36.5A; 
the fluctuation range of the real iq is ±15.4A; the fluctuation 
range of the torque is ±6.9N·m; and the fluctuation range of 
the speed is ±5rpm. Thus, the fluctuations are small in the 
real id, real iq, torque and speed. That is to say, there is a good 
static performance in condition 4. 

In condition 5, the PMSM is operated with a sudden load 
when the speed is 3500rpm. At the 16th sample period, the 
expected electromagnetic torque is suddenly changed from 
72N·m to 163N·m. The results of this condition are shown in 
Fig. 10. When the sample period is between the 1st and the 
16st, it can be seen that the fluctuation range of the real id is 
±8.4A; the fluctuation range of the real iq is ±3.1A; the 
fluctuation range of the torque is ±3.4N·m; and the 
fluctuation range of the speed is ±2.3rpm. When the sample 
period is between the 17st and the 40st, it can be seen that the 
fluctuation range of the real id is ±23A; the fluctuation range 
of the real iq is ±15.3A; the fluctuation range of the torque is 
±6.9N·m; and the fluctuation range of the speed is ±2.6rpm. 
Thus, if the load is constant, the fluctuations are small in the 
real id, real iq, torque and speed. That is to say, there is a good  

 
Fig. 10. Results in condition 5. (a) id. (b) iq. (c) Torque. (d) Speed. 

 

 
Fig. 11. Results in condition 6. (a) id. (b) iq. (c) Torque. (d) Speed. 
 

static performance in condition 5. Furthermore, if the load is 
changed suddenly, the real id , real iq and mechanical torque 
can rapidly keep up with their respective expected values. 
Thus, there is good dynamic performance in condition 5. 

In condition 6, the PMSM is operated with a sudden load 
when the speed is 8000rpm. At the 16th sample period, the 
expected electromagnetic torque is suddenly changed from 
25N·m to 70N·m. The results of this condition are shown in 
Fig. 11. When the sample period is between the 1st and the 
16st, it can be seen that the fluctuation range of the real id is 
±19.9A; the fluctuation range of the real iq is ±13.1A; the 
fluctuation range of the torque is ±3.9N·m; and the 
fluctuation range of the speed is ±4.4rpm. When the sample 
period is between the 17st and the 40st, it can be seen that the 
fluctuation range of the real id is ±35.7A; the fluctuation 
range of the real iq is ±15.1A; the fluctuation range of the 
torque is ±6.9N·m; and the fluctuation range of the speed is 
±4.8rpm. Thus, if the load is constant, the fluctuations are 
small in the real id, real iq, torque and speed. That is to say, 
there is good static performance in condition 6. Furthermore, 
if load is changed suddenly, the real id, real iq and mechanical 
torque can rapidly keep up with their respective expected 
values. Thus, there is good dynamic performance in condition 6. 

In conclusion, the estimation values show that there is good 
accuracy in the parameter estimation method proposed in this 
paper. Meanwhile, if the load is constant, the fluctuations are 
small in the real id, real iq, torque and speed. That is to say, 
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there is good static performance in the designed PI controller 
proposed in this paper. Furthermore, if load is suddenly 
changed, the real id , real iq and mechanical torque can rapidly 
keep up with their respective expected values. Thus, there is 
good dynamic performance in the designed PI controller 
proposed in this paper. 

 

VI. CONCLUSIONS 

In order to design a PI controller with good performance 
when motor parameters are unknown, a control algorithm 
based on the stability margin is proposed in this paper. First 
of all, based on the mathematical model of the PMSM and the 
LS method, the motor parameters are estimated offline. Then 
based on the estimated values of the motor parameters, 
natural angular frequency and phase margin, a PI controller is 
designed. Performance indices including the natural angular 
frequency and phase margin are directly used to design the PI 
controller in this paper. Scalar functions of the d-loop and the 
q-loop are selected. It can be seen that the designed controller 
parameters satisfy Lyapunov large scale asymptotic stability 
theory if the natural angular frequencies of the d-loop and the 
q-loop are large than 0. Experimental results show that there 
is good accuracy in the parameter estimation method and that 
there are good static and dynamic performances in the 
designed PI controller. The parameter estimation method 
proposed in this paper is simple and easy to implement. 
Meanwhile, performance indices are directly used to design 
the PI controller and the PI controller design method is easy 
to implement. The PI controller design method proposed in 
this paper can be applied to improve design efficiency when 
motor parameters are unknown. 
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