• Title/Summary/Keyword: Fire-Safety door

Search Result 95, Processing Time 0.02 seconds

Study of evacuation fire doors in multiple facilities (다중이용시설의 피난방화문에 관한 연구)

  • Cha, Jong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7380-7384
    • /
    • 2014
  • Evacuation fire doors were manufactured by applying phosphorescent paint to the whole fire door whose performance was already recognized, and applying heat sensitive paint around the grip. The facility was improved by the evacuation and safety functions on the fire door, which has been used as only a fire facility, and the fire door is also used as an evacuation facility. The brilliance of the evacuation safety fire door manufactured in this study passed the brilliance test of Korea Fire Institute with a performance more than the brilliance (7mcd after 60 minutes) of the existing inducement sign. During a fire, the visible area is larger than the evacuation door inducement, etc. and light preventive status in the lower part of the fire door was observed during the descent of smoke. Therefore, it is considered to extend the evacuation effective time of evacuators. In heat sensitive paint applied around the grip, a color change is observed on the fire door when approaching a certain temperature ($70^{\circ}C$). Therefore, the first disaster that evacuators can encounter on the grip of a fire door during a fire can be prevented and should be helpful in recognizing the backfiring possibility and preventing safety accidents for firefighters who must enter a fire space.

A Study on the Closing Force according to the Opening Angle of the Door in the Smoke Control System (제연구역 출입문 개방 각도에 따른 폐쇄력에 관한 연구)

  • Oh, Won-Sin;Joung, Suck-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • In this study, the experiment was conducted on a fire door(W × H = 0.98 m × 2.19 m) installed on the vestibule. The effective leakage area for each opening angles and closing forces derived from the impulse-momentum equation was compared and analyzed with the experimental results. As a result of the experiment, the major factors affecting the door closing forces were the pressure difference and the area of the door. The difference of door closing forces between measured and calculated values by the impulse-momentum equation showed a deviation of less than ±15% at the opening angles of 5°to 10°. At the door opening angle of 2.5°, the dynamic pressure was much higher than the measured static pressure, and this pressure difference is estimated to be air resistance acting to prevent the door from being completely closed.

Study on Disaster Prevention in Case of Fire at Subway Platform with Platform Screen Door

  • Rie, Dong-Ho;Yoon, Sung-Wook;Ko, Jae-Woong;Lee, Keun-Oh
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.36-42
    • /
    • 2005
  • A study on fire phenomena in a subway transit mass station has been carried out as a part of disaster prevention plan at the subway station. The ventilation facilities installed in both the platform and the trackway are designed to convert into a smoke exhaust system in emergency situation, creating an environment necessary for evacuation. 3 dimensional Numerical Simulations based on the CFD are carried out using a simulation tool, Fire Dynamic Simulator. Total of six different cases are made and performances are compared each other to find optimal vents operation to ensure safer environment for evacuation at the platform area considering the installation of platform screen door.

Unsteady Heat Transfer of Fire Door Exposed to High Temperature (고열을 받는 방화문의 비정상 열전달)

  • 박일규;장동식;이연원;권오현;도덕희
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2000
  • The purpose of this study is to investigate the details of unsteady heat transfer in a heated fire door. This investigation is carried out numerically for two dimensional fire door which is composed of normal plasterboard and mild steel including air layer or heat shield. It is shown from the results that the recirculation occurs at the inner part of fire wall due to gravity force by temperature difference. The case I gives better adiabatic effect than the case II because temperature around the fire wall reachs at $230.96^{\circ}C$ in the case I and reachs at $450.37^{\circ}C$ in the case II.

  • PDF

Vestibule Smoke Control Considering the Stack Effect and the Opening of the Outside Door (굴뚝효과와 외부출입문 개방을 고려한 부속실 제연)

  • Yongkwang Kim;Zudal Son;Seoyoung Kim;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • The purpose of this study is to improve the stack effect of the staircase and the failure to take into account the opening of the outside door of the staircase, which are the disadvantages of the existing smoke control only vestibule. As a result of the study, the new vestibule and the staircase simultaneous smoke control are equipped with an exhaust flap damper with an effective opening area of about 0.25 m2 in the upper part of the staircase, and a ventilator-type air supply fan of about 5 m3/s in the lower part, and take measures to prevent overpressure in the staircase. If you use the new simultaneous smoke control method of the vestibule and staircase, you can achieve the following effects. First, it is possible to open the external entrance door. Second, it can reduce the stack effect. Third, the staircase door closes automatically without fail. And a new method of preventing overpressure was proposed for the vestibule.

Study on the Evacuation Time Analysis by Platform Screen Door Opening Rate (스크린도어(PSD)의 개폐율에 따른 피난소요시간 분석에 관한 연구)

  • Kim, Min-Jae;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.59-64
    • /
    • 2016
  • The PSD (Platform Screen Door System) has been installed to enhance the passengers' safety. A total of 592 stations operate the PSD system, which is almost 71.8% of all stations in South Korea. This study compared the opening rate between the PSD and train door, and calculated the exact amount of passengers at peak time. In addition, the evacuation time was simulated by Pathfinder 2015 with the exact input data. Some of the high density stations have extremely high dangerous points about the passengers' evacuation at some situations by the PSD door opening rate. In particular, due to the interference of a fixed door, when it stops at 7 m less than the regular position, its opening rate becomes less than half of the normal state. To solve this problem, it should be made possible to open the fixed door by changing it to an emergency door or improving the PSD module system.

Numerical Analysis on Features of Airflow through Open Door in Pressure Differential System (급기가압 제연시스템의 방연풍속 형성특성에 대한 수치해석적 분석)

  • Kim, Jung-Yup;Rie, Dong-Ho;Kim, Ha-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.463-468
    • /
    • 2008
  • The fact that the major cases of life casualties are from smoke in the fire accidents and the expected steep increase of skyscrapers, huge spaces, multiplexes and huge scaled underground spaces demand establishment of efficient smoke countermeasure. In pressure differential systems for smoke management, the speed of airflow through open door between accommodation and lobby should be maintained over 0.5m/s on the whole area of door to prevent smoke from infiltrate into evacuation root when the door is open for refuge. The numerical analysis on features of airflow through open door are carried out and the results are presented.

  • PDF

Estimating Door Open Time Distributions for Occupants Escaping from Apartments

  • Hopkin, Charlie;Spearpoint, Michael;Hopkin, Danny;Wang, Yong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • The door open time, resulting from occupants evacuating from apartments, is an important parameter when assessing the performance of smoke ventilation systems in high-rise apartment buildings. However, the values recommended in UK design guidance appear to have limited substantiation. Monte Carlo simulations have been carried out considering variabilities in door swing time, flow rate and number of occupants. It has been found that the door open time can be represented by a lognormal distribution with a mean of 6.6, 8.7 and 11.1 s and a standard deviation of 1.7, 3.2 and 4.7 s for one, two and three-bedroom apartments, respectively. For deterministic analyses, it is proposed that the 95th percentile values may be adopted in line with recommended practice for other fire safety design parameters such as fuel load density and soot yield, giving door open times of 10 s to 19 s, depending on the number of bedrooms.

The Leakage Crack Calculation of the Fire Door and the Stack Effect Analysis (방화문의 누설틈새 계산 및 연돌효과 분석)

  • Kim, Il-Young;Kwon, Chang-Hee
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.46-53
    • /
    • 2013
  • The architecture environment has changed. The corresponding design criteria should be changed. From July 27th, 2005 the Korea Standard of the fire door changed concerning the smoke resistance test which made the door gap structure more elaborate. However the National Fire Safety Codes are applied by the old data's of England. Which in case differs in the actual construction to the blue print, making the safety standard too excessive. Analyze the results and the phenomenon that occurs due to the difference between design and reality. The National Fire Safety Codes should be revised to leakage crack calculation is presented. Difference of the air flow for the smoke protection due to the stack effect analyzed. Living patterns and evacuation patterns of the apartment reflect and reasonable air flow measurement method are presented.

Study on the Analysis of Differential Pressure of the Access Door for a Smoke Control Zone and the Effectiveness of the Measurement Criteria of its Opening Force (제연구역 출입문의 차압 및 개방력 측정기준의 실효성 분석에 관한 연구)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.24-30
    • /
    • 2012
  • The purpose of this study is to analyze the problem in measuring the differential pressure between the fire area and the neighboring smoke control zone as well as the opening force of a fire door and to present the actual values measured by an objective method. NFSC 501A specifies that the force necessary to open an access door when operating a smoke control system shall be less than 110 N. When the smoke control system does not operate in the space where it is installed, the door opening force can be measured by the test method in KS F 2805. However, when the smoke control system operates, additional opening force is required to overcome the force generated by the differential pressure between the fire area and smoke control room. Therefore, it can be seen that the method proposed by the standard has insufficient reliability. The analog measuring device and digital measuring device showed that the opening forces, $F_a$ and $F_d$, of the fully closed door before the smoke control system were 27.8 N and 27.4 N, respectively. When the door remained open by $5^{\circ}$, the opening forces, $F_a$ and $F_d$, were 33 N and 33.6 N, respectively. When the smoke control system operated and the door was fully closed, the door opening forces, $F_a$ and $F_d$, were 77.6 N and 76.0 N, respectively. Therefore, since the door opening forces are different from the criteria presented by KS F 2805, it is required to review the criteria appropriately.