• Title/Summary/Keyword: Fire spread rate

Search Result 101, Processing Time 0.03 seconds

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Analyses of Scenarios Based on a Leakage of Highly Compressed Air and Fire Anticipated in CAES (Compressed Air Energy Storage) Facility (압축공기에너지저장 시설에서 발생 가능한 압축공기 유출 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.568-576
    • /
    • 2015
  • In this study, scenarios based on the leakage of highly compressed air and fire occurrence turned out to be high risks in an operation stage of CAES facility were constructed and estimated. By combining Bernoulli equation with momentum equation, an expression to calculate an impact force of a jet flow of compressed air was derived. An impact force was found to be proportional to the square of diameter of fracture and the pressure of compressed air. Four types of fire scenarios were composed to evaluate an effects that seasonal change and location of fire source have on the spread behavior of smoke. Smoke from the fire ignited in the vicinity of CAES opening descended more quickly below the limit line of breathing than one from the fire occurred 10 m away from CAES opening, which is expected to occur due to a propagation of wave front of smoke. It was shown that a rate of smoke spread of the winter fire is faster than one of the summer fire and smoke from the winter fire spreads farther than one of the summer fire, which are dependent on the direction of air flow into access opening. Evacuation simulation indicated that the required safe evacuation time(RSET) of the summer and winter fires are 262, 670 s each.

A Study on Combustion Experiments of Multi Type Air-Conditioner Outdoor Units by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 멀티시스템형 에어컨실외기의 연소실험에 관한 연구)

  • Min, Se-Hong;Bae, Yeon-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.168-177
    • /
    • 2011
  • The combustion test for real box of AC outdoor unit has been performed in this study in order to estimate the fire hazard in multi-system type of AC outdoor unit which is currently used for commercial use. The result showed that in test, there was explosion inside of AC outdoor unit, and flame erupted and fire spread through upper side grill. And then this fire burnt the combustibles such as wires, electronic control board, heat exchange copper plate and plastics etc inside the unit, refrigerant gas pipe was burst due to fire, and accelerated the explosion and flame eruption to outside while the refrigerant was erupting. It is found in this test that the maximum heat release rate of AC outdoor unit is 5,830 kW, the maximum internal temperature measured with infrared camera and thermocouple is $1,201^{\circ}C$, maximum ambient temperature is $881^{\circ}C$, and flame rose higher than about 5 m. It is concluded that the fire in AC outdoor unit cause fire to combustibles around the unit, and may give big damage by generating the secondary fire. It is expected that the result obtained from the test on the real object may be applied to fire realization of AC outdoor unit and estimation of fire spreading to the combustibles around in the future computer simulation.

A Study on the Prediction of Fire Load in case of a Train Fire (철도 차량 화재시 화재강도 예측을 위한 연구)

  • Yang, Sung-Jin;Chang, Jung-Hoon;Gang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2101-2108
    • /
    • 2008
  • Most of train fires which occur in usual cases do not grow up significantly on a large scale enough to bring about casualties and harmful damages. However, the consequence of some train fire accidents can be devastating disaster so that it would be even recorded in history in unusual cases. Accordingly, such a probability of fire disaster cannot be ignored in aspect of the railway safety assesment. A scale of injury and damage is very difficult to predict and analyze. Because it is depend on various factors, i.e. fire load, burning period, facilities, environment condition, and so on. Thus, a prediction of fire load could be understood as a one methodology to estimate railway safety assesment. The summation method which is one of them is used to evaluate the overall fire load by assuming that sum of heat release rate per unit area or mass of each composite material equals the total. However, since the train fire is classified into a compartment fire in under-ventilation condition. The summation method do not estimate a fire load completely. In this journal, Various methods to predict fire load are introduced and evaluated. Especially the fire simulation tool FDS(Fire Dynamics Simulator)which is based on the CFD(Computational Fluid Dynamics) is introduced, too. Through the FDS simulation, numerical analyses for the fire load and flame spread are performed. Then, these results of the simulation are validated through the comparison study with the experimental data. Then, limitations and approximations including in simulation process are discussed. The future direction of research is proposed.

  • PDF

Study on the Fire Behavior of Spring Bed Mattress with and Without a Cooling Frame (냉각프레임 설치 유무에 따른 스프링 침대 매트리스의 화재성상에 관한 연구)

  • Seo, Bo-Youl;Park, Kye-Won;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • To improve the fire safety of spring bed mattress, a cooling frame including cooling material (water) was made and a cooling frame was installed under the bed mattress or between the bed mattress and bed mattress base; fire tests (real scale) were conducted with or without a cooling frame. Similar fire behavior was observed at the beginning of the test (approximately 3 minutes). Subsequently, rapid fire growth in the mattress without a cooling frame, but with a cooling frame, the decline progressed without growth. The flame spread on the top surface of the bed mattress was similar in the semicircular direction, and the average flame speed velocity was analyzed at approximately 0.005 m/s. The maximum flame height was found to be approximately 2.7 m without a cooling frame, and approximately 1.8 m with a cooling frame installed. In addition, the maximum heat release rate was measured to be approximately 740 kW without a cooling frame, and approximately 400 kW with a cooling frame installed. As a result, the flame height and heat release rate were reduced when the bed mattress was fired through the installed cooling frame.

Development of Crown Fire Propagation Probability Equation Using Logistic Regression Model (로지스틱 회귀모형을 이용한 수관화확산확률식의 개발)

  • Ryu, Gye-Sun;Lee, Byung-Doo;Won, Myoung-Soo;Kim, Kyong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Crown fire, the main propagation type of large forest fire, has caused extreme damage with the fast spread rate and the high flame intensity. In this paper, we developed the probability equation to predict the crown fires using the spatial features of topography, fuel and weather in damaged area by crown fire. Eighteen variables were collected and then classified by burn severity utilizing geographic information system and remote sensing. Crown fire ratio and logistic regression model were used to select related variables and to estimate the weights for the classes of each variables. As a results, elevation, forest type, elevation relief ratio, folded aspect, plan curvature and solar insolation were related to the crown fire propagation. The crown fire propagation probability equation may can be applied to the priority setting of fuel treatment and suppression resources allocation for forest fire.

A Study on the Fire Characteristics of Aluminum Composite Panel by Large Scale Calorimeter (라지스케일 칼로리미터에 의한 알루미늄 복합패널 외장재의 연소특성에 관한 연구)

  • Yun, Jung-Eun;Min, Se-Hong;Kim, Mi-Suck;Choi, Sung-Bok
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • In this research, exterior material combustion experiment was really tested to evaluate fire risks of aluminium complex panel which is used a lot for building exterior material. As a result, We saw fast fire spreading of aluminium complex panel. The reason is polyethylene in aluminum complex panel combust spreading fast fire flame vertically. In this test, the highest heat release rate of aluminum complex panel was 1,144 kW and surface temperature which is measured by thermocouple went up to more than $903.3^{\circ}C$, that temperature is quite a higher than $660^{\circ}C$ which is aluminum melting temperature. So, fire of aluminum complex panel can be evaluated to give us severe damage both by fast fire spreading vertically and by fire spreading through openings internally. These results from real experiment will be able to use to predict fire spreading of aluminum complex panel by comparing to modeling materialization of aluminum complex panel in the future.

Study on Flame Height Equation for the Pinus densiflora Surface Fuel Bed (소나무 낙엽층 화염높이 산정식에 관한 연구)

  • Kim, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.10-15
    • /
    • 2009
  • Flame height calculation in a forest fire is a crucial part of predicting horizontal or vertical flame spread flared by radiation heat transfer. Flame height, which is one of the flame characteristics, can be estimated by the average height of luminous flame. This research relied on flame height observation test on P. densiflora surface fuel bed, which are surface combustibles in a forest, and calorimeter to measure Heat Release Rate, thus produced $H_f=0.027(\dot{Q'})^{2/3}$, flame height calculation equation for surface fuel. The research did not take into consideration such conditions as external velocity, slope and other variables that could affect flame height. According to comparison among experiment results, calculation results of the above formula and those of existing Heskestad formula (1998), it was found that standard error in fallen pine needles between experimental results and calculation results of the above formula amounts to 0.08, whereas standard error in same plant between experimental results and calculation results of existing Heskestad formula amounts to 0.23.

Fire safety evaluation of the subway car's interior materials (지하철 내장재료의 재료특성에 따른 화재안전도 평가)

  • Lee Duck-Hee;Jung Woo-Sung;Lee Cheul-Kyu;Kim Sun-Ok
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.327-332
    • /
    • 2003
  • We investigated the fire characteristics of the subway electric car's interior materials and evaluated the safety of it. The testing methods are ISO 4589-2 for Limited Oxygen Index, ISO 5658-2 for surface flame spread, ISO 5660-1 for Heat Release Rate, ASTM E 662 for smoke density and BS 6852 Annex B.2 for gas toxicity. The materials of seven organization including KNR were tested. Most of the materials are under the levels of the foreign country's demand. We also reported the test methods of other countries and compared it to ours.

  • PDF

Reviewing the fireproofing of lightweight aerataed concrete for fire door interior cores (방화문 내부 심재용 경량기포콘크리트의 방화성 검토)

  • Hong, Sang-Hun;Kim, Bong-Joo;Jung, Ui-In;Kim, Hae-Nah;Park, Jun-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.43-44
    • /
    • 2023
  • Fire doors installed to prevent the spread of fire in buildings are made of paper honeycomb, glass wool, and other materials. Due to their high water absorption rate, they absorb ambient moisture and degrade, and their increased weight causes them to sag internally, creating voids that can warp in the event of a fire and allow flames to pass through. To overcome these issues, research is being conducted on the physical performance of lightweight aerated concrete. However, there is a lack of research on how to ensure fire resistance. Therefore, in this study, the backside temperature of lightweight aerated concrete formulations was measured and compared and analyzied with the physical performance. Since it is difficult to achieve low density by saturation alone, aerated concrete with EPS was produced, which resulted in a density reduction of 24'26%, but the strength increase per unit cement increase was 5'25%, which tended to be lower than the formulation without EPS. The results showed that the lightweight aerated concrete with EPS was 130~140℃ lower than the lightweight aerated concrete with EPS, which is believed to be due to the melting point of EPS delayed the heat diffusion. In the future, wo plan to conduct research to identify the optimal formulation for fire door core materials by varying the amount of EPS added and using industrial by-products to increase long-term strength.

  • PDF