• Title/Summary/Keyword: Fire safety R&D

Search Result 89, Processing Time 0.036 seconds

A Study on Zone-based Risk Analysis System using Real-time Data (실시간 데이터를 이용한 지역기반 위험분석 시스템에 관한 연구)

  • Oh, Jeong Seok;Bang, Hyo Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.83-89
    • /
    • 2013
  • Energy industry facilities can cause fatal damage for internal industry employee as well as external general people because handling various kinds of gas and harmful substance might be spread to large scale severe accident by fire, explosion, and toxic gas leakage. In order to prevent these accidents, quantification by damage effect on structure and human is tried by using quantitative risk assessment, but it is difficult to process instantly exceptional cases and requires knowledge of expert. This paper aims to minimize exceptional cases and knowledge of expert, and present risk with human perceptible. So, we designed and developed zone-base risk analysis system that can compute risk of zone in real time at that point using database and incremental model.

Quantitative Risk Analysis of a Pervaporation Process for Concentrating Hydrogen Peroxide (과산화수소 농축을 위한 투과증발공정의 정량적 위험성 분석)

  • Jung, Ho Jin;Yoon, Ik Keun;Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.750-754
    • /
    • 2014
  • Quantitative risk analysis has been performed for a pervaporation process for production of high test peroxide. Potential main accidents are explosion and fire caused by a decomposition reaction. As the target process has a laboratory scale, the consequence is considered to belong to Category 3. An event tree has been developed as a model for occurrence of a decomposition reaction in the target process. The probability functions of the accident causes have been established based on the frequency data of similar events. Using the constructed model, the failure rate has been calculated. The result indicates that additional safety devices are required in order to achieve an acceptable risk level, i.e. an accident frequency less than $10^{-4}/yr$. Therefore, a layer of protection analysis has been applied. As a result, it is suggested to introduce inherently safer design to avoid catalytic reaction, a safety instrumented function to prevent overheating, and a relief system that prevents explosion even if a decomposition reaction occurs. The proposed method is expected to contribute to developing safety management systems for various chemical processes including concentration of hydrogen peroxide.

Fire Extinguisher Maintenance System using Smart NFC Communication and Real-Time Pressure Measurement (스마트 NFC 통신과 실시간 압력 측정을 이용한 소화기 유지관리 시스템)

  • Park, Byeng-Cheol;Park, Ki-Hong
    • Journal of Digital Contents Society
    • /
    • v.18 no.2
    • /
    • pp.403-410
    • /
    • 2017
  • In this paper, the fire extinguisher maintenance system using smart NFC communication and the real-time pressure measurement is proposed. The proposed system consists of three steps in the flow of information. The first step is to identify the fire extinguisher through NFC tagging in the fire extinguisher module using the smart device. The fire extinguisher appearance check and the real-time pressure measurement is performed in the second step, and the last step sends the check status information to the management server. In particular, the actual pressure value is calculated based on the angle of the green area and the indicating needle. Some experiments are conducted so as to verify the proposed system, and as a result, the proposed system shows that the administrator can effectively control the status information of fire safety check.

Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks (LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발)

  • Chae, Chung Keun;Lee, Jae Hun;Chae, Seung Been;Kim, Yong Gyu;Han, Shin Tak
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.

A Computational Study on Cooling Analysis of the Flame Deflector for the 75 tonf Class Propulsion Test Facility (75톤급 추진기관 시험설비 화염유도로 냉각해석에 관한 수치적 연구)

  • Moon, Seong-Mok;Cho, Nam-Kyung;Kim, Seong-Lyong;Jun, Sung-Bok;Lee, Kyoung-Hoon;Kim, Dong-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.55-64
    • /
    • 2015
  • In this study, a 3-D flame cooling analysis is conducted to examine thermal safety for the flame deflector of the 75 tonf class propulsion test facility, and the safe discharge of the exhaust gas is assessed by using numerical results. The Mixture multiphase model is adopted for the simulation of heat transfer and phase exchange process between flame and cooling water, and the computational study using the single species unreacted model for the exhaust plume is carried out for the flame cooling. Numerical analysis predicts maximum temperature on the flame deflector wall for different water flow rates, and evaluates the safe minimum flow rate of water corresponding to the fire-resistant temperature for concrete.

Analysis of Safety by Expansion of Hydrogen Charging Station Facilities (수소충전소 설비 증설에 따른 안전성 해석)

  • Park, Woo-Il;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.83-90
    • /
    • 2020
  • This study conducted a risk assessment using the HyKoRAM program created by international joint research. Risk assessment was conducted based on accident scenarios and worst-case scenarios that could occur in the facility, reflecting design specifications of major facilities and components such as compressors, storage tanks, and hydrogen pipes in the hydrogen charging station, and environmental conditions around the demonstration complex. By identifying potential risks of hydrogen charging stations, we are going to derive the worst leakage, fire, explosion, and accident scenarios that can occur in hydrogen storage tanks, treatment facilities, storage facilities, and analyze the possibility of accidents and the effects of damage on human bodies and surrounding facilities to review safety.

A Study on Quality Assurance in Auto-parts Research & Development Stage with APQP and DFSS (APQP와 DFSS를 연계한 자동차부품연구개발 단계에서 품질보증에 관한 연구)

  • Lee, Kang-In;Kim, Jae-Hyu
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.1
    • /
    • pp.131-140
    • /
    • 2011
  • Today, due to the global recession car sales have been decreased rapidly and auto makers are competing continuously to expand their market share. Automakers are struggling in order to secure competitive cost and quality through continuous cost reduction and quality innovation activities to win in the competition. In this situation, auto parts makers are trying to reinforce price competitiveness by reducing COPQ (Cost Of Poor Quality) in the mass production stages by securing the quality of components in advance from the design stage through DFSS (Design For Six Sigma) activities which is 6 sigma approach in the R&D field. However, auto parts makers have been undergone various confusion, feeling difficulties to get interrelationship among various activities. Thus, this study is going to suggest approach method for much more effective R&D activities by securing interrelationship between ISO/TS 16949 system established in the auto parts industry and DFSS activities.

Investigations on Partial Discharge, Dielectric and Thermal Characteristics of Nano SiO2 Modified Sunflower Oil for Power Transformer Applications

  • Nagendran, S.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1337-1345
    • /
    • 2018
  • The reliability of power transmission and distribution depends up on the consistency of insulation in the high voltage power transformer. In recent times, considering the drawbacks of conventional mineral oils such as poor biodegradability and poor fire safety level, several research works are being carried out on natural ester based nanofluids. Earlier research works show that sunflower oil has similar dielectric characteristics compared with mineral oil. BIOTEMP oil which is now commercially available in the market for transformers is based on sunflower oil. Addition of nanofillers in the base oil improves the dielectric characteristics of liquid insulation. Only few results are available in the literature about the insulation characteristics of nano modified natural esters. Hence understanding the influence of addition of nanofillers in the dielectric properties of sunflower oil and collecting the database is important. Considering these facts, present work contributes to investigate the important characteristics such as partial discharge, lightning impulse, breakdown strength, tandelta, volume resistivity, viscosity and thermal characteristics of $SiO_2$ nano modified sunflower oil with different wt% concentration of nano filler material varied from 0.01wt% to 0.1wt%. From the obtained results, nano modified sunflower oil shows better performance than virgin sunflower oil and hence it may be a suitable candidate for power transformer applications.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Combustibles in Residential and Office Spaces (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 -주거 및 사무공간 가연물을 중심으로)

  • Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • The design fire based on the heat release rate (HRR) of combustibles can significantly affect the assessment of fire safety in the performance-based design (PBD). In the present PBD, however, limited information in the foreign literature has been used without further verification due to the lack of fire information in domestic combustibles. The objective of this study is to provide information on the HRR and fire growth rate for various combustibles in residential and office spaces. To end this, the fire experiments were carried out with single and multiple combustibles. The peak HRR of combustibles used in the present study had a range of 36 kW~1,092 kW. The fire growth rates were also $0.003kW/s^2{\sim}0.0287kW/s^2$ and $0.003kW/s^2{\sim}0.0838kW/s^2$ for the residential and office spaces, respectively. In particular, a sofa had the highest fire risk in terms of the peak HRR and fire growth rate. Finally, a methodology for calculating the peak HRR in a space was proposed through correlation analysis between the peak HRR and exposed surface of various combustibles.

A Study on Quantitative Risk Presentation of LNG Station (LNG충전시설의 위험도 표현에 관한 연구)

  • Ko, Jae-Wook;Yoo, Jin-Hwan;Kim, Bum-Su;Lee, Heon-Seok;Kim, Min-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • There are lots of energy facilities using gas(storage facility, compressed gas pipe, station, tank lorry) on the domestic. These major gas facilities cause major accidents associated with fire, explosion, toxic and etc. With the increased interest in reducing air pollution, supply of natural gas for gas vehicles is increasing. Thus, the number of establishments of LNG (Liquefied Natural Gas) and CNG(Compressed Natural Gas) stations is increasing as well. However, due to major gas accidents such as the fire and explosion accident of a Buchen LPG (Liquefied Petroleum Gas) station, it is difficult to establish a new station. In this research, we present quantitative risk assessment for LCNG;LNG multi-station and compare it result against individual risk criteria of HSE.

  • PDF