• 제목/요약/키워드: Fire resistance characteristics

Search Result 184, Processing Time 0.021 seconds

Strength and Fire Resistance Characteristics of Oyster Shell Aggregate with Increasing Mass Ratio (굴 패각 골재의 질량비 증가에 따른 강도 및 내화특성)

  • Hong, Snag-Hun;You, Nam Gyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.26-27
    • /
    • 2017
  • Oyster packs generate about 150,000 tons a year. Various studies are under way to utilize this oyster shell. Ca is the main component of oyster shell and is used as a raw material of refractory board. Studies on application of refractory board using oyster shell are also continuing. It is expected that the refractory characteristics will be improved as the mass of oyster shell, that is Ca, increases. In this study, mortar specimens and board specimens were fabricated by increasing the mass ratio of oyster shells classified below 0.6mm, 1.2 ~ 0.6mm, 2.5 ~ 1.2mm and 5.0 ~ 2.5mm, and the strength and fire resistance characteristics were examined.

  • PDF

An Evaluation of Fire Resistance and Mock-up Test of the Alumino-silicate Fire Resistant Board (알루미노 실리케이트계 내화보드의 내화성능 및 현장적용성 평가)

  • Kim, Doo-Ho;Park, Dong-Cheol;Kim, Woo-Jae;Lee, Sea-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05b
    • /
    • pp.43-47
    • /
    • 2010
  • The use of high-strength concrete has increased for its excellent structural stability as buildings become higher and bigger than ever before in Korea and overseas recently. The functional requirement of building materials has also been bolstered so for the high -performance, high-quality construction materials to be used more extensively. However, the internal structure of the high-strength concrete is very dense so spalling can be caused during fire. The spalling in turn can cause critical structural damages followed by the fatal consequences, demolition of the building. Therefore, ensuring fire safety for high-rise buildings is assumed to be urgent. Alumino-silicate fire resistant board producing technology has been developed in situations that new materials with excellent fire resistance and easy installation has been sought. The alumino-silicate fire resistant board turned out to exhibit not only fire resistance and excellent physical and dynamical characteristics but also excellent onsite applicability and easy process and transportation after completing Mock-up test. Its excellence as a high-performance building materials was proven.

  • PDF

Analysis of Thermal Characteristics and Insulation Resistance based on Usage Environment and Current Value of Electrical Socket Outlet (전기콘센트의 사용환경과 전류값에 따른 열적특성 및 절연저항 분석)

  • Kim, Kyung Chun;Kim, Doo Hyun;Kim, Sung Chul
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.22-30
    • /
    • 2019
  • In 2018, overload, overcurrent, insulation aging, and a contact failure caused 659 electric fires. There is almost no failure of electrical socket outlets during their manufacturing or installation period. After several months or several years, overload or overcurrent of electrical socket outlets leads to a contact failure or short circuit which causes an electric fire. Therefore, this paper analyzed for thermal characteristics based on a current value and the change in insulation resistance along with a temperature rise caused by electrical socket outlets and the state of laboratory use in workplaces. As a results, regarding the thermal characteristics based on the current value of each installation year, a temperature increase was related to a current value, an installation year, and whether the contact unit is corroded. Insulation resistance began to decrease when a temperature increased to a certain level. With a lapse of installation year, the temperature at which insulation resistance began to decrease was lowered. This paper can be applicable for the survey data about electrical socket outlet induced fire accidents and management guidelines.

Spalling Characteristics of High Performance Concrete According to Changes in PP Fiber Ratio and Type of Aggregate (PP섬유 혼입율 및 잔골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Jung, Hong-Keun;Kim, Won-Ki;Pei, Chang-Chun;Han, Min-Cheol;Yang, Seng-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.61-64
    • /
    • 2009
  • This study is reviewed fire resistance characteristics of high strength concrete according to changes in PP fiber mixing ratio and type of fine aggregate, and the results can be summarized as follows. As fire resistance characteristics, all plain crushed sands prevented spalling regardless of increase in mixing ratio of PP fiber. Mixtures other than the plain showed satisfactory spalling prevention when 0.05 % or more of PP fiber was mixed. After the fire resistance experiment, the plain showed 5.5 % of mass loss rate when fiber was not mixed and others could not be measured. According to increase in mixing ratio of fiber, river sand with fineness modulus of 2.2 showed most satisfactory result of 34 %${\sim}$42 %. Mass loss rate after fire resistance experiment was most satisfactory at about 10 % in the plain crushed sand without mixing of fiber, and all other mixes with 0.05 % PP fiber or more showed 5${\sim}$10 % loss rate.

  • PDF

A Study on the Damage by Burning Characteristics of Insulating Materials of RCD (누전차단기 절연재료의 소손 특성에 관한 연구)

  • Lee, Chun-Ha;Kim, Shi-Kuk;Ok, Kyung-Jae;Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.62-66
    • /
    • 2009
  • In this study, we study the damage by burning characteristics of insulating material of RCD (Residual Current Device) used in Korea. The insulating materials of RCD manufactured by three manufacturers are used as the sample. We compare and analyze the thermal decomposition characteristics, combustion characteristics and tracking characteristics of samples. The TGA and Mass Loss Calorimeter meeting the requirements for the ISO5660 (Fire tests-Reaction to Fire, part 1) are used for analyzing the thermal decomposition characteristics and combustion characteristics respectively. In addition, the tracking characteristics are analyzed according to standard of KSC IEC 60112 known as the test used for measuring the resistance tracking and comparison tracking indexes. The study results show that the resistance tracking property of insulating material provided by A Company is highest. Also, the test results show that the resistance tracking property of insulating material provided by B Company is lowest. However, the thermal stability of insulating material provided by this company is excellent at high temperature of above $350^{\circ}C$. In addition, the test results show that the thermal stability of insulating material provided by C Company is highest at temperature of below $400^{\circ}C$.

Fire Resistance of High-Strength Concrete Corresponding to the Finishing Material Kinds and Thickness (마감재 종류 및 두께 변화에 따른 고강도 콘크리드의 내화특성)

  • Jung, Hong-Keun;Pei, Chang-Chun;Lee, Seong-Yeun;Han, Chang-Peng;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.473-474
    • /
    • 2009
  • In this study, a column member of an existing architecture finished with gypsum board was assumed to examine fire resistance characteristics according to the type and thickness of finishing material. All specimens showed spalling to the reinforcing part after fire resistance test. For temperature characteristics, rapid temperature increase of 100${\sim}$200 $^{\circ}C$ was shown between 35 ${\sim}$ 60 minutes in the sequence of 9.5 T, 9.5 T (2 pieces), 12.5 T, 15 T and fire resistant 12.5 T. The analysis suggested that finishing materials with better fire resistance are necessary.

  • PDF

A Study on the Characteristics of Fire Resistance of Window Material in Compartment Fire (건물화재시 창문재료에 따른 내화특성 연구)

  • Hur, Man-Sung;Jang, Moon-Seok;Cho, Soo
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • The full-scale compartment fire tests were carried out to evaluate the characteristics of fire resistance of window material under actual fire conditions. The room size used for full-scale room fire tests was 4 by 3.8 m with 2.4 m high ceiling. The windows with PVC, Aluminum and AL+Wood frame materials were established, sofa and mattress were used as fire sources. The window contained pair glasses with the air between 6 mm glasses. Temperatures at total 32 points in the room were measured to find the temperature distribution in the room fire. It is examined that thermal effects on window frame materials such as charring, distortion, melting, structural collapse, and other effects.

Modifications to fire resistance ratings of steel frames based on structural configuration: A probabilistic-based approach

  • Behnam, Behrouz
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.661-672
    • /
    • 2021
  • In this article, the role of spans number and length in fire-resistance ratings (FRRs) of fireproofed steel frames are investigated. First, over a span-lengthening scenario, two one- and three-bay frames under the ISO834 fire are examined. It is shown that the FRRs of the frames rely highly on the changes made on their span length. Second, a building designed for three spans number of three, four, and five under natural fire is investigated. The beams are designed for two load-capacity-ratios (LCRs) of optimum and ultimate. The fire curves are determined through a probabilistic-based approach. It is shown that the structural vulnerability vastly increases while the number of spans decreases. The results show that for an optimum LCR, while the five-span frame can meet the required FRR in 87% of the fire scenarios, the four- and three-span frames can meet the required FRR in only 56%, and 50% of the fire scenarios, respectively. For an ultimate LCR, the five-, four- and three-span frames can meet the required FRR in 81%, 50%, and 37.5% of the fire scenarios, respectively. Functional solutions are then proposed to resolve the insufficiencies in the results and to rectify the application of the standard-based FRRs in the cases studied. The study here highlights how employing current standard-based FRRs can endanger structural safety if they are not connected to structural characteristics; a crucial hint specifically for the structural engineering community who may be not well familiar with the fundamentals of performance-based approaches.

The Resistance Characteristics and Reliability Evaluation of an Insulation Ring Type of Corrugated Stainless Steel Tubing(CSST) (절연링형 금속플렉시블호스(CSST)의 저항 특성 및 신뢰성 평가)

  • Lee, Jang-Woo;Kim, Jeom-Sik;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.25-31
    • /
    • 2016
  • This paper has analyzed the structure, applicable regulations and the resistance characteristics of insulation ring type of CSST (Corrugated Stainless Steel Tubing for Gas). With the flammability test conducted in accordance with KS C IEC 60811-1-1, the evaluation of insulation resistance, temperature characteristics, and reliability has been conducted. An insulation ring type CSST consists of protective coating, tube, nut, insulation ring, packing, socket, and ball valve. Connecting an insulation ring type CSST to gas tubings for gas appliance is not permitted, moreover, the product shall be installed inside a sleeve pipe in case of buried installation such as the ceiling. Damages on protective coating and tube were detected when fire was applied to the test sample with a portable torch for 60 seconds. The insulation resistance of a normal product was $49.59M{\Omega}$, while that of the product completed the flammability test reduced to $9.21M{\Omega}$. The mean insulation resistance within the confidence Interval of 95% using the mini tap program 17 was $49.59M{\Omega}$ and the mean insulation resistance within the confidence interval reduced to $9.21M{\Omega}$. In the normal distribution analysis of 95% confidence interval, the value-P of the normal product was stable at 0.075 and AD(Anderson-Darling) statistic value was turned out to be 0.063, which is very normal, and the standard deviation was analyzed as 0.2586. The value P of the product completed the flammability test resulted in 0.005, the AD was 1.355 and the standard deviation reduced to 0.07908.