• Title/Summary/Keyword: Fire proofing protection

Search Result 8, Processing Time 0.047 seconds

Structural Design Guide Line of Composite Beam (내화피복이 생략된 합성보의 구조설계지침 제정을 위한 고찰)

  • Hong, Won-Kee;Kim, Jin-Min;Lee, Kyoung-Hun;Park, Seon-Chee;Kim, Jeom-Han
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.93-98
    • /
    • 2008
  • As high rise buildings and large span spatial structures are constructed, new composite members and construction techniques are continuously developed. Wide flange steel beam can be easily constructed but the fire proofing protection is necessary and the cost is high. Nowadays environmental pollution of structures is becoming a big issue. The material of fire proofing protection is not allowed to use for structural members in several countries because it cab be a cause of environment pollution. Composite beam is a new hybrid beam system which is not needed a fire proofing protection process. Composite beam has better construction capacity than that of RC system and has more economic advantages than that of wide flange steel beam. In this paper, structural design guide lines of composite beam were provided to apply design and construction.

Environmental Friendly Construction Process of Composite Beam and its Application (친환경 층고 절감형 합성보의 시공 Process 및 시공사례)

  • Hong, Won-Kee;Park, Seon-Chee;Lee, Kyoung-Hun;Kim, Jeom-Han;Lee, Ho-Chan;Hwang, Yun-Ha
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.107-112
    • /
    • 2007
  • Recently hybrid beam system is widely used because it has many structural advantages such as short construction period and low story height etc. Generally steel wide flange beam exposure type and embedded type hybrid beams are constructed. Even though exposure hybrid beam is easily constructed, the fire proofing protection process is necessary because steel wide flange beam cannot resist to fire itself. Story height reduction type hybrid beam, which is introduced hybrid beam in this paper, does not need fire proofing protection process because it is constructed as a fully embedded type hybrid beam. Developed construction process and actual construction cases of story height reduction type hybrid beam were introduced in this study.

Evaluation of fire-proofing performance of reinforced concrete tunnel lining coated by newly developed material (신개발 내화재료에 피복된 철근콘크리트 터널라이닝의 내화성능평가)

  • Park, Hae-Genn;Kim, Jang-Ho Jay
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Efficient traffic network is required in urban area for good living condition. However, dense traffic network creates traffic jam and gives bad influences to the ground environment. Therefore, advanced use of underground and tunnel is required. But, in the last 20 years many tunnel fire accidents have occurred all over the world. Increase of tunnels and increase of traffics result in increase of tunnel fire. Tunnel fire creates damage to people and to the tunnel structure. Also, tunnel fire creates a big economical loss. In a mountain tunnel, the stability of the tunnel will not be disturbed by fire although the tunnel lining will get a severe damage. However, in a shield tunnel or immersed tube tunnel, cut and cover tunnel, there is a high possibility that tunnel itself will collapse by fire because their tunnel concrete lining is designed as a structural member. The aim of this experimental research is to verify the fire protection performance of newly developed cementitious material compared with the broadly used existing products in Europe and Japan. For the experiments, the general NATM tunnel concrete linings with the newly developed material were tested using fire loading curve of RABT (Maximum peak temperature is $1,200^{\circ}C$) and RWS (Maximum peak temperature is $1,350^{\circ}C$). From the test results, the newly developed fire protection material applied with 30 mm thickness showed good fire-proofing performance under RABT fire loading.

  • PDF

A Study on the Protection of Smoke Control Performance in Building Enclosure to Prevent the Expansion of Smoke in Fire (화재시 연기확대 방지를 위한 건축물 구획공간에서의 방연성능 확보에 관한 조사 연구)

  • Jin, Seung-Hyeon;Kim, Hye-Won;Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.91-92
    • /
    • 2019
  • In case of fire in a compartmentalized building area, a number of casualties are caused by smoke production. Accordingly, openings, penetrations and joints in compartmentalized spaces should be secured not only for fire resistance but also for smoke-proofing. However, domestic test regulations stipulate test methods for refractory performance of penetrations and joints, but do not specify separate deferral performance. In the case of openings, the test for the smoke performance exists at room temperature, but the smoke performance at high temperature is not secured, so countermeasures are needed.

  • PDF

Fire Combustion Characteristics of Membrane Materials According to the Height and Heat Generation Rate (막재료의 설치높이와 발열량에 따른 화재연소특성)

  • Cho, Seung-Ho;Choi, Kwang-Ho;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.84-90
    • /
    • 2016
  • Various form of membrane structures are being built in recent years. However, there is no appropriate fire proofing standards which can be applied each specific membrane structures. Therefore, existing fire protection standards are in establishment state and they need to be revised. In the current study, commonly used membrane materials(ETFE, PVF, PTFE) has been selected to investigate its fire resistance behavior with the change of fire duration time. In addition to this, heat generation rate of the membrane materials in correlation with the height of membrane has been investigated. And these fire combustion characteristics of membrane materials can be used in future practice for the fire prevention regulations of membrane structures.

A Development of Fire Protective Coatings using Ternary(Li/Na/K) Soluble Silicate (3성분계(Li/Na/K) 용해성 규산염을 이용한 방화피복재의 개발)

  • 이내우;김정훈
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.28-34
    • /
    • 1995
  • To improve fire proofing characteristics of protective coating using ternary soluble silicate from two component mixture, the method of reducing solubility, increasing intumescence and protection time have been studied. Intumescence and solubility of ternary silicate mixtures were dependent on many kinds of water release and the strength of cation cross-links between polysilicate particles. Especially the effect of additive, for example, corn starch was investigated. However the solubility of ternary mixture is decrease in order of Na$^{+}$ >K$^{+}$ >Li$^{+}$, and the magnitute of intumescence is increased $K^{+}$ >Na$^{+}$ >Li$^{+}$.}$ +/.

  • PDF

A Study on the Development of Explosion Proof ESD Detector and Intrinsic Safety Characteristics Analysis (방폭구조 ESD Detector 개발 및 본질안전 특성 분석에 관한 연구)

  • Byeon, Junghwan;Choi, Sang-won
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Article 325 (Prevention of Fire Explosion due to Electrostatic) of the Rule for Occupational Safety and Health Standard specifies that in order to prevent the risk of disasters caused by static electricity, fire, explosion and static electricity in the production process, However, in order to do this, it is absolutely necessary to use a pre-detection technology and a detector for antistatic discharge prediction, which is a precautionary measure by static electricity in a fire / explosion hazard place, but in Korea, And there is no technical standard for the application of the technology of the explosion proof structure of the related equipment. Research methods include domestic and overseas electrostatic discharge detection technology and literature investigation of related equipment explosion proofing technology, domestic and foreign electrostatic discharge detection device production and use situation investigation, advanced foreign technology data analysis and benchmarking. In particular, we sought to verify the results of empirical experiments using electrostatic discharge detection technology through sample purchase and analysis of related major products, development of optimization technology through prototype production, evaluation, and supplementation, and expert knowledge through expert consultation. The results of this study were developed and fabricated two prototypes of electrostatic discharge detector based on the technology / standard related to electrostatic discharge detection technology in Korea and abroad through development of electrostatic discharge detection technology and development and production of detector. In addition, based on the development of electrostatic discharge detection technology, we developed an intrinsic safety explosion proof ib class explosion proof technology applicable to the process of using and handling flammable gas and flammable liquid vapor and combustible dust. In the case of the over voltage and minimum voltage are supplied to the explosion-proof structure ESD detector, check the state of the circuit and the transient and transient currents generated by the coil and capacitor elements during the input and standby of the signal pulse voltage. Explosion-proof equipment-Part 11: Intrinsically safe explosion proof structure The comparative evaluation with the reference curve in Annex A of "i" confirms that the characteristics of the intrinsically safe explosion protection structure are met.

Ecological Green Roofs in Germany

  • Kohler, Manfred
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.4
    • /
    • pp.8-16
    • /
    • 2004
  • The industrialization of central Europe more than 100 ago marked the beginning of densely concentrated buildings in quickly growing cities. A cheap type of roofing material of that time was tar. But it was dangerous because it was high inflammable. Then some roofer had a splendid idea. They used sandy material as a final layer atop the impermeable tar layer. These roofs were much more fire resistant than the typical roofs. In this sandy layer some plant species began to grow spontaneously. This was the beginning of the green roof history of modern Europe. A number of these green roofs survived both world wars. In the early 80's in Berlin alone, 50 such buildings existed and they continued to be waterproof until the present day. Since the 1992 Earth Summit of 1992 in Rio de Janeiro(http://www.johannesburgsummit.org/html/basic_info/unced.html) the term "sustainable development" became of central interest of urban designers. In city regions green roofs had become synonymous with this term. With a small investment, long-lasting roofs can be created. Further back in history, more exciting examples of green roofs can be found. The hanging gardens of antiquity are well-known. There are also green roofs built as insulation against cold and heat all over the world. For over 20 years, roof greening in central Europe has been closely examined for various reasons. Roof greening touches several different disciplines. Of primary interest is the durability of the roofs. But ecologists are also interested in green roofs, for instance in biodiversity research. The beneficial effect of greening on water proofing was also proven. For some time, the issue of fire protection was investigated. According to tests, green roofs received a harsh careful rating. Their fire protective property is considered similar to that of tile roofs. Another recent impulse for the green roof movement in Germany has come from the evident improvement of storm water retention and the reduced burden on the sewer system. The question of whether and how much energy green roofs can save has become an urgent question. The state of the research and also various open questions from a central European point of view will be discussed in the context of international collaboration. Apart from academic considerations, those who involve themselves in this issue take a predominantly positive view of the numerous existing green roofs in Germany. In some cities, green roofs are the typical construction technique for new buildings. A few outstanding examples will conclude this review. In Germany, about 20 companies, some of which operate internationally, specialize in green roof consulting. Learning from each other in an open-ended way with respect to different construction techniques and applications in various climatic regions can only be accomplished through such international collaboration as is taking place here.