• Title/Summary/Keyword: Fire image detection

Search Result 132, Processing Time 0.023 seconds

Development of Early Tunnel Fire Detection algorithm Using the Image Processing (영상 처리 기법을 이용한 터널 내 화재의 조기 탐지 기법의 개발)

  • Lee, Byoung-Moo;Han, Don-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.499-504
    • /
    • 2006
  • 터널 내 화재 발생 시 대규모의 인명, 재산 피해가 발생하는데 이러한 상황을 조기에 탐지함으로써 피해를 최소화하기 위한 시스템이 필요하다. 또한 터널 내 설치된 CCTV를 사람이 24시간 감시하기에는 너무 어려운 점이 많다. 이에 따라 적절한 영상 처리를 통한 화염 및 연기 검출 시스템을 통해 경보를 알려줄 경우, 보다 편리하고 사람이 모니터 앞에 없을 때 화재 발생 시 화재를 검출할 수 있어 피해를 최소화 할 수 있다. 본 논문에서는 영상처리 기법을 이용하여 터널 안에서 발생한 화재 및 연기를 고속으로 탐지하기 위한 알고리즘을 제안하였다. 터널 안에서의 화재 탐지는 차량 조명 및 터널내의 조명등과 같은 여러 가지 상황에 의해 산불 탐지 알고리즘과 다른 독자적인 알고리즘의 개발이 요구된다. 본 논문에서 제시한 두 가지 알고리즘은 기존 알고리즘보다 정확한 위치 탐지와 초기 단계에서의 탐지가 가능하도록 되었다. 또한 우리는 실험 결과를 통해 각각의 성능을 비교함으로써 제시한 알고리즘의 타당성을 보여주었다.

  • PDF

Beam Scheduling and Task Design Method using TaP Algorithm at Multifunction Radar System (다기능 레이다 시스템에서 TaP(Time and Priority) 알고리즘을 이용한 빔 스케줄링 방안 및 Task 설계방법)

  • Cho, In-Cheol;Hyun, Jun-Seok;Yoo, Dong-Gil;Shon, Sung-Hwan;Cho, Won-Min;Song, Jun-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • In the past, radars have been classified into fire control radars, detection radars, tracking radars, and image acquisition radars according to the characteristics of the mission. However, multi-function radars perform various tasks within a single system, such as target detection, tracking, identification friend or foe, jammer detection and response. Therefore, efficient resource management is essential to operate multi-function radars with limited resources. In particular, the target threat for tracking the detected target and the method of selecting the tracking cycle based on this is an important issue. If focus on tracking a threat target, Radar can't efficiently manage the targets detected in other areas, and if you focus on detection, tracking performance may decrease. Therefore, effective scheduling is essential. In this paper, we propose the TaP (Time and Priority) algorithm, which is a multi-functional radar scheduling scheme, and a software design method to construct it.

A Method for Eliminating Aiming Error of Unguided Anti-Tank Rocket Using Improved Target Tracking (향상된 표적 추적 기법을 이용한 무유도 대전차 로켓의 조준 오차 제거 방법)

  • Song, Jin-Mo;Kim, Tae-Wan;Park, Tai-Sun;Do, Joo-Cheol;Bae, Jong-sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.47-60
    • /
    • 2018
  • In this paper, we proposed a method for eliminating aiming error of unguided anti-tank rocket using improved target tracking. Since predicted fire is necessary to hit moving targets with unguided rockets, a method was proposed to estimate the position and velocity of target using fire control system. However, such a method has a problem that the hit rate may be lowered due to the aiming error of the shooter. In order to solve this problem, we used an image-based target tracking method to correct error caused by the shooter. We also proposed a robust tracking method based on TLD(Tracking Learning Detection) considering characteristics of the FCS(Fire Control System) devices. To verify the performance of our proposed algorithm, we measured the target velocity using GPS and compared it with our estimation. It is proved that our method is robust to shooter's aiming error.

Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment

  • Kim, Minho;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.517-534
    • /
    • 2019
  • In abrupt fire disturbances, high quality images suitable for wildfire damage assessment can be difficult to acquire. Quantifying wildfire burn area and severity are essential measures for quick short-term disaster response and efficient long-term disaster restoration. Planetscope (PS) imagery offers 3 m spatial and daily temporal resolution, which can overcome the spatio-temporal resolution tradeoff of conventional satellites, albeit at the cost of spectral resolution. This study investigated the potential of augmenting PS imagery by integrating the spectral information from Sentinel-2 (S2) differenced Normalized Burn Ratio (dNBR) to PS differenced Normalized Difference Vegetation Index (dNDVI) using histogram matching,specifically for wildfire burn area and severity assessment of the Okgye wildfire which occurred on April 4th, 2019. Due to the difficulty in acquiring reference data, the results of the study were compared to the wildfire burn area reported by Ministry of the Interior and Safety. The burn area estimates from this study demonstrated that the histogram-matched (HM) PS dNDVI image produced more accurate burn area estimates and more descriptive burn severity intervals in contrast to conventional methods using S2. The HM PS dNDVI image returned an error of only 0.691% whereas the S2 dNDVI and dNBR images overestimated the wildfire burn area by 5.32% and 106%, respectively. These improvements using PS were largely due to the higher spatial resolution, allowing for the detection of sparsely distributed patches of land and narrow roads, which were indistinguishable using S2 dNBR. In addition, the integration of spectral information from S2 in the PS image resolved saturation effects in areas of low and high burn severity.

A model to secure storage space for CCTV video files using YOLO v3

  • Seong-Ik, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • In this paper, we propose a CCTV storage space securing model using YOLO v3. CCTV is installed and operated in various parts of society for disasters, disasters and safety such as crime prevention, fire prevention, and monitoring, and the number of CCTV is increasing and the quality of the video quality is improving. Due to this, as the number and size of image files increase, it is difficult to cope with the existing storage space. In order to solve this problem, we propose a model that detects specific objects in CCTV images using YOLO v3 library and deletes unnecessary frames by saving only the corresponding frames, thereby securing storage space by reducing the size of the image file, and thereby Periodic images can be stored and managed. After applying the proposed model, it was confirmed that the average image file size was reduced by 94.9%, and it was confirmed that the storage period was increased by about 20 times compared to before the application of the proposed model.

Identifying Analog Gauge Needle Objects Based on Image Processing for a Remote Survey of Maritime Autonomous Surface Ships (자율운항선박의 원격검사를 위한 영상처리 기반의 아날로그 게이지 지시바늘 객체의 식별)

  • Hyun-Woo Lee;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.410-418
    • /
    • 2023
  • Recently, advancements and commercialization in the field of maritime autonomous surface ships (MASS) has rapidly progressed. Concurrently, studies are also underway to develop methods for automatically surveying the condition of various on-board equipment remotely to ensure the navigational safety of MASS. One key issue that has gained prominence is the method to obtain values from analog gauges installed in various equipment through image processing. This approach has the advantage of enabling the non-contact detection of gauge values without modifying or changing already installed or planned equipment, eliminating the need for type approval changes from shipping classifications. The objective of this study was to identify a dynamically changing indicator needle within noisy images of analog gauges. The needle object must be identified because its position significantly affects the accurate reading of gauge values. An analog pressure gauge attached to an emergency fire pump model was used for image capture to identify the needle object. The acquired images were pre-processed through Gaussian filtering, thresholding, and morphological operations. The needle object was then identified through Hough Transform. The experimental results confirmed that the center and object of the indicator needle could be identified in images of noisy analog gauges. The findings suggest that the image processing method applied in this study can be utilized for shape identification in analog gauges installed on ships. This study is expected to be applicable as an image processing method for the automatic remote survey of MASS.

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D information (RGB-D 정보를 이용한 2차원 키포인트 탐지 기반 3차원 인간 자세 추정 방법)

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.41-51
    • /
    • 2018
  • Recently, in the field of video surveillance, deep learning based learning method is applied to intelligent video surveillance system, and various events such as crime, fire, and abnormal phenomenon can be robustly detected. However, since occlusion occurs due to the loss of 3d information generated by projecting the 3d real-world in 2d image, it is need to consider the occlusion problem in order to accurately detect the object and to estimate the pose. Therefore, in this paper, we detect moving objects by solving the occlusion problem of object detection process by adding depth information to existing RGB information. Then, using the convolution neural network in the detected region, the positions of the 14 keypoints of the human joint region can be predicted. Finally, in order to solve the self-occlusion problem occurring in the pose estimation process, the method for 3d human pose estimation is described by extending the range of estimation to the 3d space using the predicted result of 2d keypoint and the deep neural network. In the future, the result of 2d and 3d pose estimation of this research can be used as easy data for future human behavior recognition and contribute to the development of industrial technology.

Deep Learning Based Rescue Requesters Detection Algorithm for Physical Security in Disaster Sites (재난 현장 물리적 보안을 위한 딥러닝 기반 요구조자 탐지 알고리즘)

  • Kim, Da-hyeon;Park, Man-bok;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • If the inside of a building collapses due to a disaster such as fire, collapse, or natural disaster, the physical security inside the building is likely to become ineffective. Here, physical security is needed to minimize the human casualties and physical damages in the collapsed building. Therefore, this paper proposes an algorithm to minimize the damage in a disaster situation by fusing existing research that detects obstacles and collapsed areas in the building and a deep learning-based object detection algorithm that minimizes human casualties. The existing research uses a single camera to determine whether the corridor environment in which the robot is currently located has collapsed and detects obstacles that interfere with the search and rescue operation. Here, objects inside the collapsed building have irregular shapes due to the debris or collapse of the building, and they are classified and detected as obstacles. We also propose a method to detect rescue requesters-the most important resource in the disaster situation-and minimize human casualties. To this end, we collected open-source disaster images and image data of disaster situations and calculated the accuracy of detecting rescue requesters in disaster situations through various deep learning-based object detection algorithms. In this study, as a result of analyzing the algorithms that detect rescue requesters in disaster situations, we have found that the YOLOv4 algorithm has an accuracy of 0.94, proving that it is most suitable for use in actual disaster situations. This paper will be helpful for performing efficient search and rescue in disaster situations and achieving a high level of physical security, even in collapsed buildings.

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods (분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.1-10
    • /
    • 2022
  • As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.