• Title/Summary/Keyword: Fire flame detection

Search Result 79, Processing Time 0.026 seconds

Simulation of the Brownian Coagulation of Smoke Agglomerates in the Entire Size Regime using a Nodal Method (결절법을 이용한 전영역에서의 연기입자 응집체에 대한 브라운응집현상 해석)

  • Goo, Jae-Hark
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.681-691
    • /
    • 2011
  • The size distributions of smoke particles from fire are prerequisite for the studies on fire detection and adverse health effects. Above the flame of the fire, coagulation dominates and the smoke particles grow from 1 to 50 nm up to 100 to 3,000 nm, sizes ranging from the free-molecular regime to the continuum regime. The characteristics of the agglomeration of the smoke particles are well known, independently for each of the free-molecular and continuum regimes. However, there are not many systematic studies in the entire regime by the complexity of the mechanisms. The purpose of this work is to find the characteristics of the development of the size distribution of smoke particles by agglomeration in the entire size range covering the free-molecular regime, via transition regime, to the near-continuum and continuum regime for each variation of parameters such as fractal dimension, primary particle size and dimensionless coagulation time. In this work, the dynamic equation for the discrete-size spectrum of the particles was solved using a nodal method based on the modification of a sectional method. In the calculation, the collision frequency function for the entire regime, which is derived by using the concept of collision volume and general enhancement function, was applied. The self-preserving size distribution for the entire regime is compared with the ones for the free-molecular or continuum regimes for each variation of the parameters.

Selection of a Fire Detector for Wood Cultural Property (목조문화재 건축물 구조에 따른 화재감지기 종류 선정에 관한 연구)

  • Roh, Sam-Kew;Yoon, Hyoung-Uk
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.88-93
    • /
    • 2016
  • A fire detector installed in wood cultural properties has not have selected the detector type appropriate for the features of cultural properties and the structure of wood fire after the fire in Sungnyemun-Gate since 2008. Applying wooden cultural properties different from the general architecture of the structure and fire characteristics is difficult. Therefore, buildings were classified into four shape types and field survey and wooden architecture structure characteristics to identify the problems of the detectors installed on wooden cultural property buildings. The problems appeared to lack the adaptability to external fire detection sensor selection and missing fire detectors installed in accordance with the place. To solve the problem, the closed and open space of the rooms used a smoke detector, outdoor select flame or fixed temperature linear detector to solve the problem.

A Study on the Test and Installation Standards of the Video Fire Detector (영상화재감지기 시험과 설치기준에 관한 연구)

  • Lee, Jeong-Hyun;Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.1-5
    • /
    • 2016
  • This research performed tests of Video Fire Detector and criteria of installation to make suggestions regarding the criteria that must be reflected in NFSC 203 by comparing the standards of FM Approvals, UL, ISO7240 and NFPA 72. FM Standard related to Video Fire Detector test has been classified as Smoke, Flame type, but the UL Standard has classified only as a Smoke type. This research examined 6 cases of fire phenomenon detection case in ISO 7240 and 3 cases in NFPA 72, respectively. There are 15 items required for the installation standard of a Video Fire Detector and each field standard is presented as a per installation method. To apply a Video Fire Detector, the pertinent items (the definition of term, detector's classification, structure and function among its test item) must be inserted. In addition, 7 items of the fire test, i.e., the sensitivity adjustment, prevent false alarm, ambient temperature test, the effective sensitivity and detection distance and viewing angle, aging test, flood test, must be applied to the actual test. For installation in the field, the operation environment and levels of illumination, and NFSC 203 must be set, and standards relevant to the sound system, indicators' installation distance, etc. need to be inserted.

Fire Monitoring System for Traditional Markets based on Digital Twin-IoT Sensing (디지털 트윈 & IoT Sensing 융합 기반 전통시장 화재 모니터링 시스템)

  • Jung-Taek Hong;Kyu-Hyup Lee;Jin-Woo Song;Seo-Joon Lee;Young-Hee Chang;Soon-Wook Kwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1251-1258
    • /
    • 2023
  • Traditional markets are infrastructure with facilities and characteristics of very high population density. Recently, arcades have been installed through traditional market modernization policies, and aging infrastructure has been repaired. However, gas and electrical facilities of traditional markets cannot be easily replaced because of its high density. And because regular inspections are not conducted, management of facilities is on very poor condition. In addition, when a fire occurs in a traditional market, the fire easily spreads to nearby stores and is likely to spread to a large fire because of a lot of highly flammable substances. Smoke detectors and heat detectors are installed in most traditional markets to monitor fires, but malfunctions are frequent due to the nature of smoke detectors and heat detectors, and network facilities are not properly maintained. Therefore, in this study, gas detection sensors and flame detectors are additionally installed in Gwangmyeong Traditional Market, and a digital twin-based traditional market fire monitoring system is implemented in conjunction with existing sensors in the market's 3D model. With this digital twin based fire monitoring system, we can reduce the malfunctions of fire detect sensors, and can easily guide the evacuation route.

A Study on u-CCTV Fire Prevention System Development of System and Fire Judgement (u-CCTV 화재 감시 시스템 개발을 위한 시스템 및 화재 판별 기술 연구)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Li, Qigui;Park, So-A;Kim, Myung-Jin;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.463-466
    • /
    • 2010
  • In this paper, CCTV based fire surveillance system should aim to development. Advantages and Disadvantages analyzed of Existing sensor-based fire surveillance system and video-based fire surveillance system. To national support U-City, U-Home, U-Campus, etc, spread the ubiquitous environment appropriate to fire surveillance system model and a fire judgement technology. For this study, Microsoft LifeCam VX-1000 using through the capturing images and analyzed for apple and tomato, Finally we used H.264. The client uses the Linux OS with ARM9 S3C2440 board was manufactured, the client's role is passed to the server to processed capturing image. Client and the server is basically a 1:1 video communications. So to multiple receive to video multicast support will be a specification. Is fire surveillance system designed for multiple video communication. Video data from the RGB format to YUV format and transfer and fire detection for Y value. Y value is know movement data. The red color of the fire is determined to detect and calculate the value of Y at the fire continues to detect the movement of flame.

  • PDF

Implementation of Home Security System using a Mobile App (모바일 앱을 이용한 홈 시큐리티 시스템 구현)

  • Kwon, Young-Il;Jeong, Sam-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.4
    • /
    • pp.91-96
    • /
    • 2017
  • In this paper, we aim to respond efficiently to crime by using Arduino and smartphone apps in response to increasing number of house-breaking crimes. It receives the signal of the sensor installed in the house and connects it with the app of the smartphone. To use the app, you can download the app from the user's smartphone, launch the app, and operate the operation outside the home, not only inside the house, by linking the executed app. Among the sensors installed in the house, the movement detection sensor is used to enhance the security, and the gas leakage sensor and the flame detection sensor can be used to easily detect the risk of fire and to prevent the fire early. Security is further enhanced by the ability to remotely control the front door with a smartphone. After that, various sensors can be added and it can be developed as a WiFi module in addition to the Bluetooth module.

Study on IoT-based Map Inside the Building and Fire Perception System (IoT 기반 건물 내부 지도 및 화재 안내 시스템에 관한 연구)

  • Moon, Sung-Ryong;Cho, Joon-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.85-90
    • /
    • 2019
  • This paper is a study on IoT based map inside the building and fire perception system using microprocessor and LABVIEW program. The smart control system implemented in this paper is designed to identify the location of fire by using microprocessor, flame detection sensor, carbon monoxide sensor and temperature sensor, and to guide the optimal travel route through Zigbee communication. And the proposed system uses QR code to interoperate with smartphone. The coordinator control verified that the sensor value of the smart control system installed through the LABVIEW software was confirmed. The IoT based control system studied in this paper was implemented with Arduino mega board and LABVIEW software, and the operation status was confirmed by display device and coordination.

A study on the Application of Optimal Evacuation Route through Evacuation Simulation System in Case of Fire (화재발생 시 대피시뮬레이션 시스템을 통한 최적대피경로 적용에 관한 연구)

  • Kim, Daeill;Jeong, Juahn;Park, Sungchan;Go, Jooyeon;Yeom, Chunho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.96-110
    • /
    • 2020
  • Recently, due to global warming, it is easily exposed to various disasters such as fire, flood, and earthquake. In particular, large-scale disasters have continuously been occurring in crowded areas such as traditional markets, facilities for the elderly and children, and public facilities where various people stay. Purpose: This study aims to detect a fire occurred in crowded facilities early in the event to analyze and provide an optimal evacuation route using big data and advanced technology. Method: The researchers propose a new algorithm through context-aware 3D object model technology and A* algorithm optimization and propose a scenario-based optimal evacuation route selection technique. Result: Using the HPA* E algorithm, the evacuation simulation in the event of a fire was reproduced as a 3D model and the optimal evacuation route and evacuation time were calculated for each scenario. Conclusion: It is expected to reduce fatalities and injuries through the evacuation induction technique that enables evacuation of the building in the shortest path by analyzing in real-time via fire detection sensors that detects the temperature, flame, and smoke.

The Control System of Wood Pellet Boiler Based on Home Networks (홈 네트워크 기반의 펠릿 활용 난방 보일러 제어시스템)

  • Lee, Sang-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • This paper presents the implementation of a control system of pellet boiler using wood pellet as carbon neutral material. The system also has the additional features to provide remote controlling and monitoring based on home networking technology through either public switched telephone networks or mobile communication networks. It consists of three kinds of sub-modules; a main controller provides basic and additional features such as a setting of temperature, a supplying of wood pellet, a controlling of ignition and fire-power, and a removing of soot. The second is temperature controller of individual rooms which is connected to the main controller through RS-485 links. And interface modules with PSTN and mobile networks can support remote controlling and monitoring the functions. The test results under the heating area of $172m^2$ show a thermal efficiency of 93.6%, a heating power of 20,640kcal/hr, and a fuel consumption of 5.54kg/hr. These results are superior to those of the conventional pellet boilers. In order to obtain the such high performance, we newly applied a 3-step ignition flow, a flame detection by $C_dS$ sensor, and a fire-power control by fine controlling of shutter to our pellet boiler.