• Title/Summary/Keyword: Fire facilities

Search Result 834, Processing Time 0.287 seconds

Stability Characteristics based on Crane Weight of Small Fishing Vessels Under Standard Loading Conditions: Investigation Report of the Capsize Accident at Goseong Port (크레인 교체에 따른 표준재화 상태에서의 소형 어선의 복원성 특성 - 고성항 전복 사고 재결서 중심 -)

  • Kang, Dae Kon;Lee, Gun Gyung;Lee, Jun Ho;Han, Seung Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • In March 2016, a 6.67-ton fishing boat capsized owing to the loss of stability during crane operations. Capsizing occurs when a boat or ship is flipped over (or turned upside down) for reason other than accidents caused by collisions, contact, stranding, fire or explosion. Over the past nine years (2010-2018), capsize accidents have accounted for 2.34 % of all marine accidents and are gradually increasing. The loss of stability from improper shipping is the main cause of most capsizes, especially for small fishing vessels weighing 10 tons. According to the Fishing Vessel Act, small fishing vessels weighing less than a ton are exempted from inspections on stability and load cranes. This study analyzes the issue cited as the reason for the capsizing of the small fishing boat in Goseong, namely, the reduction of restoring moment due to increased weight of the crane. Fishing boats with similar loading conditions were modeled on the basis of re-determination, and their stability before and after the accident was assumed. The fishing boats with heavier cranes were found to be at higher risk of capsizing owing to the reduction of the restoring moment and the angle of deck immersion. Under standard loading conditions, the stability moments of fishing vessels are lesser during fishing, compared to when they depart from or arrive at the port.

An Analysis of Probabilistic Seismic Hazard in the Korean Peninsula - Probabilistic Peak Ground Acceleration (PGA) (한반도의 확률론적 지진위험도 분석 - 확률론적 최대지반가속도(PGA))

  • Kyung, Jai-Bok;Kim, Min-Ju;Lee, Sang-Jun;Kim, Jun-Kyung
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • The purpose of the study was to create a probabilistic seismic hazard map using the input data that reflected the seismo-tectonic characteristics of the Korean Peninsula by applying USGS program (Harmsen (2008). The program was partly modified for the purpose of this study. The uncertainty of input parameters given by specialists was reflected in calculating the seismic hazard values by logic tree method. The general pattern of PGA was quite sensitive and similar to the shape of areal source. The probabilistic seismic hazard map showed the contour distribution of peak acceleration (%g) with 10% probability of exceedance in 5, 10, 20, 50, 100, 250, and 500 years. The result showed that the peak ground acceleration (PGA) values of the northern peninsula were almost half values of the southern peninsula except Hwanghae province. The general trend of the hazard map extended in the direction of NW-SE from Whanghae province to south-eastern regions of the peninsula. The values in northern part of Kangwon province were relatively lower than other areas in the southern peninsula. The maps produced through this study are considered valuable in regulating the seismic safety of the major facilities in the Korean Peninsula.

Development of Silm Type ELCB For Airport Distribution Panel through Increased short Circuit Capacity (단락용량 증대를 통한 슬림형 공항 분전반용 누전 차단기 개발)

  • Joo, Nam-Kyu;Lee, Jong-Myong;Kim, Nam-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.360-366
    • /
    • 2012
  • In the power distribution panel installed in airport or industrial facilities, MCCB has been used for main switch and ELCB for branch switch to perform human body and leakage-inducing fire protection as well as overcurrent and short circuit protection. Especially for the airport panel, increase in accident protection is needed for stable power supply due to rapid modernization with fast-growing users, higer capacity and diversification of equipment, the increase of power capacity and the breaker made slim is a main issue for now because the issue for installation space is standing out by making panel with two-row arrangement connection method, etc. due to a many use of branch ELCBs. In this thesis, we designed arc extinguishing mechanism, considered movement direction change of contact in mechanism design. Also, we designed the breaker to work stably in case of miniaturization of leakage detection circuit and reverse connection. We conducted short circuit test to verify its function and developed the breaker that can be improved protection against accidental current with slim size operating leakage function when reverse connection to help solve the problem in using space that is increasing in the airport distribution panel.

Estimation of Safety in Railway Tunnel by Using Quantitative Risk Assessment (QRA를 이용한 철도터널 방재 안전성 평가)

  • Kim, Do-Sik;Kim, Do-Hyung;Kim, Woo-Sung;Lee, Du-Hwa;Lee, Ho-Seok
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.357-367
    • /
    • 2006
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures grow longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest of safety in long tunnel have a growing and the safety standard of long tunnel is tightening. For that reason, at the planning of long tunnel, the optimum design of safety facility in long tunnel for minimizing the risks and satisfying the safety standard is needed. For the reasonable design of long railway tunnel considering high safety, qualitative estimation for tunnel safety is required. In this study, QRA (Quantitative Risk Assessment) technique is applied to design of long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design in long railway tunnel is tarried out to verifying the QRA technique for two railway tunnels. Thus, the inclined and vertical shaft for escape way and safety facilities in long tunnel are planned, and the risks of tunnel safety for each case are estimated quantitatively.

A Basic Study for Securing the Business Continuity of Local Governments in the Event of Earthquake and Tsunami (지진 및 지진해일 발생 시 지방자치단체의 업무연속성 확보를 위한 기초 연구)

  • Shin, Hojoon;Koo, Wonhoi;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.227-234
    • /
    • 2015
  • In this study, the theoretical review was carried out on the concepts regarding the continuity of operation plan and business continuity management plan, international standard ISO22301 and common required functions for disaster response, and the business continuity guideline of local governments in Japan and establishment cases were analyzed to draw matters to be reflected for establishing the business continuity plan of local governments according to the occurrence of earthquake and tsunami. In conclusion, the standard guideline of central government should be prepared for establishing the business continuity plan of local governments and the foundation to establish the plan smoothly based on such guideline should be provided. Also, the business continuity plan should be prepared based on the previous established safety management plans by reflecting the regional characteristics of local governments. And, in order to establish the business continuity plan that fits the region, proper investigations can be carried out to examine the characteristics of each organizations, resources, facilities and environments. Lastly, detailed scenario on the scale of earthquake and tsunami occurrence and damages is prepared to establish the business continuity plan of local governments and conditions for prompt countermeasures according to the scale.

Implementation of a Dual-mode Power Strip Controller Cooperating with Smartphones Based on Environmental Sensors (환경센서에 기반한 스마트폰 연동형 듀얼모드 전원 스트립 제어기 구현)

  • Lim, Jae-Hyun;Kim, Jong-Hyun;Jang, Min-Jun;Choi, Yeon-Seung;Cheong, Ho-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.465-467
    • /
    • 2015
  • This paper implements a dual-mode power strip controller (PSCtrl) with environmental sensors which cooperates with Android-based smartphones. According to the statistics on fires in housing facilities, unidentified electrical fires account for 23.4%. In order to reduce these fire accidents caused by user carelessness and protect life and property, smart power control techniques with improved user convenience are required. For this reason, the implemented dual-mode PSCtrl controls ON-OFF operations of a power strip in two ways (e.g. manual and automatic modes) by cooperating with Android-based smartphones provided with environmental data from light, temperature, and humidity sensors. In manual mode, users check environmental data displayed on Android-based smartphones, forcibly controlling the ON-OFF operations through the dual-mode PSCtrl, and in automatic mode, when environmental data exceeds the threshold set by users in advance, the dual-mode PSCtrl automatically controls the ON-OFF operations. Some experimental tests verify successful dual-mode operations of the implemented dual-mode PSCtrl.

  • PDF

A Study on Lightweight Design of Cantilever-type Helideck Using Topology Design Optimization (위상 최적설계를 활용한 캔틸레버식 헬리데크 경량화 연구)

  • Jung, Tae-Won;Kim, Byung-Mo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.453-460
    • /
    • 2017
  • In the offshore industry, helicopters are mainly used for transportation of goods or operating personnel between offshore sites and onshore facilities. A helideck is a structure that is required for landing and take-off of helicopters on the offshore structure. There are several shapes of helidecks depending on the type of offshore structures or installation location. Among them, cantilever-type helidecks usually provide more space on the topside of offshore structures and it is safer against potential accidents like fire or explosion. In this paper, the cantilever-type helideck is selected for the research object and topology design optimization is applied for lightweight design of the helideck. A finite element model is then created from the optimal layout of truss structures of the helideck, and structural analysis is performed under various landing conditions and wind loads. Based on the analysis results, the detailed section dimensions of structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. Also, the final optimal design shows significant decrease in the total weight of the helideck.

Removal of Volatile Organic Compounds (VOCs) of Deodorant by Adding a Metal Oxide to the Essential Oils (식물정유물질에 금속산화물을 첨가한 탈취제의 휘발성유기화합물질의 제거에 관한 연구)

  • Lim, You-Young;Lee, Min-Ho;Jeon, Soo-Bin;Yang, Kyeong-Soon;Jeong, Hae-Eun;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.96-105
    • /
    • 2016
  • VOCs emissions from industries cause the air pollution and odor. In the industrial facilities, the existing odor treatment techniques have limits and problems. In this study, the optimum essential oil and metal oxide selected by screening test. lavender oil, cypress oil and TiO2 were determined by deodorant materials and those were blended by 5%, 45%, 10%, respectively. In addition, the result of batch type experiments depending on the dilution rate, injection, rate, temperature showed that the optimum condition of deodorant is 6 mL of injection rate, and 200 times of dilution rate and the removal efficiency increased in proportion with temperature. In addition, the activation energy was calculated from the rate equation, which appeared in the 3-4 times lower than conventional deodorants.

A Study on the Economic Feasibility Analysis of Cosmetics Beauty Industrialization Center

  • Kim, Ji-In;Park, Jeong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.221-229
    • /
    • 2020
  • As the cosmetics beauty industry grows into a key next-generation industry, the establishment of an industrialization center is needed, but failure to verify the adequacy and feasibility of the investment could lead to financial burdens. In this study, the project costs and facilities of an industrial center are reviewed to analyze its economic feasibility based on the cost estimates, revenue estimates, estimated profit or loss calculations, and estimated operating cash flows. The profit estimation criteria were analyzed by applying 90 per cent of expected orders for research projects (24 billion won) and 12 per cent of rental rates for testing equipment (4.5 billion won for construction), and the benefit/cost ratio is higher than 1.02 per cent and the net present value is higher than '0' won, and the internal rate of return is also more than 5.06 per cent for all three analytical methods. Therefore, in order for the construction of a cosmetics beauty industrialization center to be economically feasible, it is necessary to maintain research project orders of more than 90 percent and return on equipment rent of more than 12 percent, and a strategic approach is needed to diversify business profits.

Experimental Study for Earthquake and Subsidence-resistant Performance Evaluation of iPVC Buried Water Pipe (iPVC 매립 상수도관의 내진 성능 및 내침하 성능 평가를 위한 시험적 연구)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Jae-Bong;Ju, Bu-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • Water pipes are important facilities and consist of pipes of various specifications and materials. The annual average number of earthquakes in Korea is steadily increasing. Therefore, in case of the water pipe, it is estimated necessary to prepare for earthquakes. Damages to the water pipe by the earthquake can cause problems such as water supply and fire suppression, and cause damage to life and property. In Korea, however, it is difficult to find examples of seismic performance evaluation of water pipes based on experimental study. Damage to the water pipes by the earthquake is caused by the displacement-controlled behavior of the ground which is the liquifaction and fault lines. Especially, The damage to the water pipes by the earthquake is concentrated on the joint of the pipe. In particular, piping less than 200mm in diameter was found to be dangerous. Thus, in this study, the seismic and settlement performance of iPVC buried water pipes with fixed joints with a clamp of 150mm was evaluated with a test approach.