• Title/Summary/Keyword: Fire extinguishing nozzle

Search Result 41, Processing Time 0.033 seconds

Optimum Fire Extinguishing Modeling using Impact Factor Analysis on Water Mist System of Pool Fire (영향인자 분석을 통한 고임화재의 미분무수 최적소화 모델링)

  • Hwang, Won-Jun;Kim, Hwang-Jin;Lee, Sung-Eun;Kim, Sung-Won;Oh, Kyu-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.84-89
    • /
    • 2009
  • In this study, the fire extinguishing experiment was performed using a water mist nozzle with variation of factors which affect on the extinguishing time. The variables were distance from nozzle center to fire location, droplet size, height of nozzle and opening or not. With the experimental data, interaction and sensitivity between factors were analysed with Mini tab and deduce a optimum model of fire extinguishing of water mist system. Based on the experiment and modeling of fire extinguishing with water mist system, the most important factor on extinguishing time is the distance from the center of nozzle to fire and the opening effect was small compare with other factors.

Experimental Study on the Fire Extinguishing Characteristics of Water Mist System (미분무수 소화설비의 소화특성 실험)

  • Hwang, Won-Jun;Kim, Hwang-Jin;Oh, Kyu-Hyung;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.78-84
    • /
    • 2009
  • We carried out fire extinguishing experiments with three kinds of water mist nozzle system. Fire extinguishing experiment according to installed nozzle height and fuel pan location was done. And fire extinguishing performance was compared with plain water and foam agent mixed solution. Water mist nozzle height was varied with 4m, 3.5m and 3m and position of fuel fan was varied 0.5m and 1m from the center of water mist nozzle. Foam agent that used in this experiment is 3% type of AFFF (Aqueous Film Forming Foam) solution. Experimental result showed the door opening effect was little. Fire extinguishing performance of foam agent mixture water mist was better than the plain water mist only.

Performance of Fire Extinguishing of Water Mist Nozzle for Power Transformer Fire Scenario (주 변압기실 화재시나리오에 적용한 미세물분무 노즐의 소화성능)

  • Lee, Kyoung-Duck
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.46-54
    • /
    • 2006
  • Fire extinguishing experiment was conducted with water mist nozzle in case of the pool fire, cascade fire and spray fire on flammable liquid of class B whether water mist system can be effective system for power transformer fire scenario. In the event of a pool fire, flow rate and time to extinguish was inclined to be increased according to the obstruction rate of ignition space. Furthermore, the performance of fire extinguishing depended upon the spraying angle of the nozzles. In case of cascade fire, the effect of extinguishment was began to show from a combustion pan filled with fuel and fuel flowing plate later on.

An Experimental Study on the Improvement of Fire Extinguishing Performance of Water Mist with Foam (포 소화약제를 혼합한 미분무수 소화시스템의 소화성능 향상 방안에 관한 실험적 연구)

  • Hwang, Won-Jun;Kim, Hwang-Jin;Oh, Kyu-Hyung;Lee, Sung-Eun;Kim, Sung-Won
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.61-66
    • /
    • 2009
  • We carried out the water mist fire extinguishing experiments with the 3 kinds of foaming agents varied on the nozzle height. Test result showed that 2% AFFF (Aqueous Film Forming Foam) and 1% synthetic foaming agent for water mist system are the faster extinguishing time than the pure water mist and 3% AFFF solution. Additionally, the best fire extinguishing performance of pure water mist was shown at 3.5m nozzle height and that of the foaming agents shown at 4m nozzle height.

Influence of the Nozzle Contraction Angles of Gaseous Extinguishing Systems on Discharge Noise (가스계 소화시스템 노즐 수축각이 방출소음에 미치는 영향)

  • Kim, Yo-Hwan;Yoo, Han-Sol;Hwang, In-Ju;Kim, Youn-Jea
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.77-82
    • /
    • 2019
  • Fire extinguishing systems are essential equipment in all indoor facilities to address unexpected fire scenarios, and appropriate fire extinguishing agent should be used depending on the place and object to protect. Among these, gaseous fire-extinguishing systems are used to protect electronic equipment. Therefore, inert gases that do not undergo chemical reactions are used mainly in those systems. On the other hand, recently, owing to the high integration of electronic equipment, there are some cases, in which large noise generated from gaseous systems damage the electronic equipment. In this study, numerical analysis of the discharge noise with various nozzle contraction angles was carried out to improve the gas fire extinguishing system. Numerical analysis was carried out using ANSYS FLUENT ver 18.1. The causes of the noise were elucidated using the swirl distribution. The noise level of the modified model was reduced by approximately 6 dB compared to the reference model, which is similar to the result of a previous study, confirming the validity of the method.

Ethanol Pool Fire Extinguishing Experiment Using Twin-fluid Nozzle Supplied with Water and Air (물과 공기가 공급되는 2유체노즐을 활용한 에탄올 풀화재 소화 실험)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.37-43
    • /
    • 2019
  • In this study, ethanol pool fire extinguishing experiments were conducted using a twin-fluid nozzle. Ethanol pool fires, 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size (80 mm and 120 mm in fuel pan diameter, respectively), were tested, and the flow rates supplied to the twin-fluid nozzle for fire extinguishing were 156-483 g/min and 20-70 L/min for water and air, respectively. The heat release rate increased with increasing fire source area, and heat release rates of 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size were measured to be 1.01 kW and 5.51 kW, respectively. For both fire source cases in the present experimental range, regardless of the water flow rates, the ethanol fires were extinguished successfully under the high air flow rate condition (e.g., above 40 L/min). On the other hand, under all water flow rate conditions, the fire extinguishing time and water consumption decreased with increasing air flow rate, which were approximately 23 s and 185 g under high air flow rate conditions (e.g., above 50 L/min), respectively. Based on the water consumption per heat release rate, the present experimental data were compared with the previous ones using a single-fluid nozzle, and it was found that the twin-fluid nozzle could extinguish a fire with a lower water consumption than a single-fluid one.

The Study of a Atomizing Characteristics of a Nozzle in a Fire Extinguishing System for using CFD (CFD를 이용한 소화시스템 노즐의 분무 특성에 대한 연구)

  • Choi, Goan-Soo;Jung, Young-Kwon;Kim, Young-Soo;Kim, In-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1184-1189
    • /
    • 2008
  • This paper is a study about characteristics of the SSC-1 nozzle, which is used in a fire extinguishing system in a ship. Through this paper, we can find that the traces and elements’ distributions obtained from experiments are as the same as the simulation analysis results of CFD program. At the point of 100mm, the $\alpha$ is 34.9 in the CFD analysis, and it is 32.5 in the experiment. This shows that there is no big different between the CFD analysis and the experiment result. And the average elements velocity is similar to the SMD.

  • PDF

Effect of Absorbent Thickness on the Noise Level Reduction of Fire-Extinguishing Nozzle (흡음재 두께가 소화노즐 소음도 저감에 미치는 영향)

  • Kim, Hak-Sun;Hwang, In-Ju;Kim, Youn-Jea
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In a gas system fire extinguishing system, extinguishing agents are usually stored with approximately 280 bar at $21^{\circ}C$ and are released at approximately 8 MPa through the decompression valve and orifice to quickly suppress the fire. When extinguishing agents are discharged, they cause a loud noise (approximately 140 dB), which can damage electronics, such as hard disk drives (HDDs). Therefore, the noise is becoming a serious issue in the gas extinguishing system. The method of the noise reduction by adding an absorbent is most general and in this study, the thickness of the absorbent was as a selected design variable. The noise level at the observation point and the flow characteristics inside the nozzle were numerically calculated and analyzed using the commercial code ANSYS CFX ver. 18.1.

Application of Optimal Design Method to Agent Discharge Flow Calculation of Gaseous Fire Extinguishing Systems (최적설계법을 응용한 가스계 소화설비의 약제방출량 산출)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.51-56
    • /
    • 2015
  • In this study, optimal design methods were applied to the agent discharge flow of clean agent fire extinguishing systems. The methods combined optimal design theory and engineering theory for engineering analysis in a design program or coast savings in value engineering. Optimal design parameters were determined to optimize the agent discharge flow based on the design theory of the clean agent fire extinguishing systems and the theory of optimal design. The design factors were verified in regard to suitability for the performance of fire extinguishing systems. The results provide a foundation for optimal design method methods in other fire extinguishing systems. Optimization of the agent discharge flow of the discharge nozzle was confirmed by the constraints on the inner diameter of the discharge nozzle and the pipe, agent arrival time, flow, and pressure variation of the agent. The deviation of discharge pressure and agent time of the agent discharge nozzle were found to correlate with the pressure variation.

A Study on the Development of Computer Software for the Design of Fire Protection System (방화설비계통 설계용 전산소프트웨어 개발에 관한 연구)

  • 이정혜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.275-284
    • /
    • 1998
  • Standard on the carbon dioxide extinguishing system was prepared by the committed of the national fire protection assocition(NFPA)in USA on 1980. And this code is also applied to the design of a marine fire extinguishing system The most important problem in design is the uniform discharge of $CO_2$ through each nozzle from the high pressure $CO_2$ storage facility. The purpose of this paper is to develop the computer software to design the marine fire protection piping system. By solving the continuity equation energy equation and Bernoulli's equation simulataneously the flowrate in branch pipelines and discharge nozzles can be calculated.

  • PDF