• Title/Summary/Keyword: Fire explosion

Search Result 637, Processing Time 0.023 seconds

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process (디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구)

  • Lee, Chang Jin;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.790-803
    • /
    • 2019
  • The dioctyl terephthalic acid (DOTP) process produces plastic plasticizers by esterification of terephthalic acid with powder in the form of octanol. In this study, the dust explosion characteristics of terephthalic acid directly injected into the manhole in the form of powder in the presence of flammable solvent or vapor in the reactor of this process were investigated. Dust particle size and particle size distribution dust characteristics were investigated, and pyrolysis characteristics of dust were investigated to estimate fire and explosion characteristics and ignition temperature. Also, the minimum ignition energy experiment was performed to evaluate the explosion sensitivity. As a result, the average particle size of terephthalic acid powder was $143.433{\mu}m$. From the thermal analysis carried out under these particle size and particle size distribution conditions, the ignition temperature of the dust was about $253^{\circ}C$. The lower explosive limit (LEL) of the terephthalic acid was determined to be $50g/m^3$. The minimum ignition energy (MIE) for explosion sensitivity is (10 < MIE < 300) mJ, and the estimated minimum ignition energy (Es) based on the ignition probability is 210 mJ. The maximum explosion pressure ($P_{max}$) and the maximum explosion pressure rise rate $({\frac{dP}{dt}})_{max}$ of terephthalic acid dust were 7.1 bar and 511 bar/s, respectively. The dust explosion index (Kst) was 139 mbar/s, corresponding to the dust explosion grade St 1.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

Risk Assessment and Its Application for the POSCO's Batch Annealing Furnace Gas Systems (광양제철소 소둔로 가스설비에 대한 위험성 평가 및 안전성향상안 제시)

  • Kim Y. S.;Yoo J. H.;Jeong S. Y.;Jang E. J.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.9-13
    • /
    • 2001
  • A complete spectrum of risk assessment including qualitative and quantitative approaches were performed for the POSCO's Batch Annealing Furnace (BAF) gas systems. The purpose of BAF is to enhance the quality of steel by annealing it with either hydrogen/nitrogen mixture gas or pure hydrogen gas. Number of gas leak scenarios were identified to generate frequency of their occurrences. With the hypothetical accident scenarios given, fire/explosion impact studies were performed to estimate magnitude of significant consequences. Several different indices were also presented from which practical safety improvement action items could be established.

  • PDF

A Study on the Riskiness of Dust Explosion of Feed-Stuff (가축사료의 분진폭발 위험성에 관한 연구)

  • 이창우;함영민;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.61-68
    • /
    • 1998
  • According to the results for the thermodynamic stability of feed-stuff dust, there are little change of initiation temperature of heat generation and heating value for used particle size. But initiation temperature of heat generation decreased with high heating rate whereas decomposition heat increased with particle size. Using the supporting gas, O2, initiation temperature of heat generation decreased remarkably than using the inert gas, N2, and heating value increased as twenty times under the same condition. When the ignition energy is given from the outside, used fine particle which can float in the air easily reacted tremendously with oxygen. Average maximum explosion pressure was 6.88 Kgf/$\textrm{cm}^2$ for 80/100 mesh.

  • PDF

A Study on the Antistatic characteristics of Antistatic Garments for the Prevention of Static Electricity Hazards (정전기 재해예방을 위한 제전복의 제전특성에 관한 연구)

  • 정재희
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.57-66
    • /
    • 1990
  • The purpose of this study is to investigate electrostatic charge condition and possibility of electrostatic hazards in case of putting on synthetic smocks and antistatic garments for the purpose of prevention of electrostatic hazards due to a human body electrical charge. It is shown in case of a synthetic smocks, electrostatic voltage by friction is about 2,900 (V), half life period is 12 second, and electrostatic charge is 1.4―1.8 ($\mu$ C). When putting on a synthetic smocks, electrostatic voltage is 2,500―2,800(V). When putting on a jumper of chemical fiber, electrostatic voltage is 8,000(V) . It is, therfore, possible to cause a electrostatic hazards. It is also shown in case of a antistatic garments, electrostatic voltage by friction is 87(V) ―280(V) (washing 90 times), half life period is 3―5 second, and electrostatic charge is 0.24―0.28($\mu$ C) which is much lower than 0.6($\mu$ C) limitation of fire and explosion occurance. When putting on a antistatic garments, electrostatic voltage is 10(V) ―125(V). In conclusion, it is shown when putting on a antistatic garments it is possible to prevent a electrostatic hazards such as fire or explosion due to human body, to prevent a destruction of semiconductor elements and capacity decline, and to prevent a misoperation of automation facilities and semiconductor electric and electronic products.

  • PDF

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions - (가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 -)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

A Study on the Properties of the Heavy Duty Rust-Converting Agent used in the Potential Hazard Areas of Fire & Explosion (잠재적 화재.폭발 위험 지역 작업용 녹전환형 중방식 코팅제의 특성에 관한 연구)

  • 강영구
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.102-111
    • /
    • 1998
  • This study was concerned with the development of a heavy duty rust-converting agent, the function of which is to form metal complex coatings, containing vinyl halide-acrylic terpolymer emulsion, defoamer, emulsifying agent, glass flakes, chelating agent such as gallotannic acid, gallic acid, and pyrogallic acid, and other additives. The resulted emulsion products(Sample No.1~No.5) were characterized through test either in the forms of emulsions, which include Viscosity, Penetration rate, Acidity and Film drying rate test, or in the forms of coated layer on rusty steel substrates by FT-IR, which include hardness, gloss, salt spray, adhesion and flame retardant test. The test results are as follows ; Penetration rate(0.1~0.4 mm/min), Solid content(70%), Acidity (pH 1.8~2.0), Specific gravity(1.30~1.35), Film drying rate(108min, RH 40% ; 150min, RH 80%), Gloss(83~92, incident angle $60^{\circ}$; 88~97, incident angle $85^{\circ}$), Pencil hardness(4H~5H), Adhesion (100/100), Salt spray test(>720Hr), LOI(%) value(38%), Vertical burning test(UL 94-v-l). According to the various performance of specimens show above, the evaluation of the availability of this heavy duty rust-converting agent can be concluded that all the samples(No.1~No.5) are capable of being used in the field of chemical plant and in the hazard areas of fire and explosion potential. It was observed that the properties of sample No.2, especially gloss and hardness, were much better than that of the other samples.

  • PDF

A Field Survey on the Risk Management Information System on the Underground Space - Focused on Fire Protection Assessment System on The Underground Shopping Mals - (지하공간의 위험관리정보시스템에 관한 조사 연구 - 지하가의 화재예방평가시스템 중심으로 -)

  • Park, Jong-Keun;Roh, Sam-Kew
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.117-122
    • /
    • 2002
  • A large number of accidents at an underground place have been happening, including the gas explosion under construction of subway, the fires of underground utility and underground shopping malls, and other explosion, at home and abroad recently. These accidents make the function of a city ineffective due to the paralyses of electricity and communications net as well as the loss of property, and cause people to feel unsecured with accompaniment of a heavy of toll of lives. This study suggests safety assessment items and fire protection assessment technique for underground shopping malls by extracting dangerous elements in the management stage through examination of related accidents, documents and present conditions.

A Study on method to construct system for u-Safe fire management support (u-Safe 소방대응지원 시스템 구축방안에 관한 연구)

  • Jeon, Jai-Pil;Yang, Hae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1201-1209
    • /
    • 2008
  • In Seoul, there are lots of skyscrapers that have above 60 stories and buildings that have more than 8 basement levels, as well as massive distribution complex region which is connected to subways, departments, malls, hotels, and exhibition halls. When an accident, such as fire and explosion, happens in these areas or structures, if we can't find where fire-fighters are, who go into the building to suppress the fire, we couldn't be sure of their safety as well as effective command. Actually, it may cause much more damage itself and restrict either fire suppression or lifesaving. To protect people's life and properties as much as possible, this study will show the method to construct system of disaster-management supports with effective operation of fire force and scientific fire strategy in the scene by using Ubiquitous technique to enormous disasters.