• Title/Summary/Keyword: Fire damage characteristics

Search Result 184, Processing Time 0.025 seconds

A Study on the Safety Estimation of Wiring Connection Connector Manufactured by Housing Type (하우징 형태(Housing Type)로 제작된 배선 연결 커넥터의 안전성 평가에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.462-466
    • /
    • 2010
  • The purpose of this study is to evaluate the safety of a wire connector fabricated for the effective installation of a lighting fixture including its contact resistance, insulation resistance, withstanding voltage characteristics, etc., and to provide the basis for the analysis and judgment of PL(Product Liability) dispute by presenting a damage pattern due to a general flame and overcurrent. This study applied the Korean Standard (KS) for the incombustibility test of the connector using a general flame and performed an overcurrent characteristics test of the connector using PCITS (Primary Current Injection Test System). The contact resistance of the housing connector was measured using a high resistance meter and the insulation resistance was measured using a multimeter. In addition, a supply voltage of AC 1,500V for testing the withstanding voltage characteristics was applied to both ends of the connector. Measurement was performed on 5 specimens and the measured values were used as a basis for judgment. Since the connector is fabricated in the form of a housing, it can be connected and separated easily and has a structure that allows no foreign material to enter. In addition, since it has a structure that allows wires to be connected only when their polarity is identical, any misconnection that may occur during installation can be prevented. When the incombustibility test was performed by applying a general flame to the connector, it showed outstanding incombustibility characteristics and the blade and blade holder connected to the housing remained firmly secured even after the insulation sheath (PVC) was completely destroyed by fire. In addition, the mechanism of the damaged connecting wire showed a comparatively uniform carbonization pattern and it was found that some residual melted insulation material was attached to both ends. In the accelerated life test (ALT) to which approximately 500% of the rated current was applied, the connector damage proceeded in the order of white smoke generation, wire separation, spark occurrence and carbonization. That is, it could be seen that the connector damaged by overcurrent lost its own metallic color with traces of discoloration and carbonization. The contact resistance of the connector at a normal state was 2.164mV/A on average. The contact resistance measured after the high temperature test was 3.258mV/A. In addition, the insulation resistance after the temperature test was completed was greater than $10G\Omega$ and the withstanding voltage test result showed that no insulation breakdown occurred to all specimens showing stable withstanding voltage and insulation resistance characteristics.

A Preliminary Study on the Improvement of Safety Level from Disasters in Rural Area (농촌지역의 재난발생에 따른 안전도 향상을 위한 기초연구)

  • Koo, Wonhoi;Shin, Hojoon;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • In this study, the history of disaster occurrence in rural area was reviewed and damage characteristics were analyzed in order to improve the safety level according to the occurrence of disasters in non-urban area (rural area). Also, the concept of regional disaster prevention was adopted to rural area and the basic direction for establishing a disaster safe village in rural area was set. Due to the characteristics of rural area, the population and the number of households in the rural area were small, and the rural area showed lack of various disaster safety facilities and infrastructures and limitation in the access to the outside due to its geographical characteristics. Therefore, the matters regarding the direction for establishing and operating a regional disaster safe village reflecting humanities, facilities, infrastructures, and geographical and environmental characteristics were summarized.

An analysis of year-to-year change of degraded forest land in Mongolia nature reserve Mt. Bogdkhan in Ulaanbaatar (몽골 울란바토르 복드한산 자연보호지역의 산림훼손지 경년변화 분석)

  • Ganzorig, Myagmar;Lee, Joon-Woo;Kweon, Hyeong-Keun;Choi, Sung-Min;Lee, Myeong-Kyo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Focused on Mt. Bogdkhan nature reserve in Mongolia, this study was conducted as a fundamental research to discover a tendency and characteristics of forest damage and to draw up measures for proper plans of forest restoration through an analysis of year-to year change using satellite images. In specific, land cover mapping was conducted by using Landsat images from 1994 to 2011, and then year-to year change was analyzed to investigate the features of forest damage in Mt. Bogdkhan. The results showed that the whole area of a reservation in Mongolia in 2011 was about $416.89km^2$; among them, forest area was $167,87km^2$, accounting for about 40.3%, followed by bare patch and grassland area (58.6%) and urban dry area (1.1%). In particular, compared in 1994, the area of forest in 2011 has increased by $6.12km^2$; while bare patch and grassland area has decreased by $10.81km^2$. Primary causes of forest degradation occurred in Mt. Bogdkhan nature reserve included illegal logging for fuel, forest and grassland degradation caused by domestic animals grazing, man-made forest fire, and disaster caused by insect pest.

A Literary Study on Bezoar Bovis (우황에 대한 문헌적 고찰)

  • Park, Seong-Kyu;Park, Jae-Seuk;Baik, Seong-Il;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.8 no.3
    • /
    • pp.51-55
    • /
    • 2005
  • Objectives: Literary investigation of existing data was conducted to verify effects of Bezoar Bovis and its herbal acupuncture, and determine quality management through component analysis. Results: Following results were obtained through literary investigation. 1. Bezoar Bovis is dried cystic stone from a cattle. Its characteristics are cool, no toxicity, and bitter taste. Known actions are: quells heat and detoxifies Fire Poison, extinguishes internal movement of Liver Wind and stops convulsion, vaporizes phlegm, and opens orifice. It is mainly used for treating tremor, stroke, delirium, sore throat, oral furuncle, boil, and others. 2. Bezoar Bovis is effective for eliminating liver toxicity, protecting against brain damage, and has anti-microbial activities. 3. Bezoar Bovis is mixed with bear gall bladder and deer musk to be used as herbal acupuncture, and this mixture is effective is invigorating liver functions as well as treating arthritis, headache, and etc. 4. Principal components of Bezoar Bovis are bilirubin-type pigments and cholic acids. The amount of bilirubin can be used as a standard to determine the quality of Bezoar Bovis.

Review of Resilience-Based Design

  • Ademovic, Naida;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.91-110
    • /
    • 2020
  • The reliability of structures is affected by various impacts that generally have a negative effect, from extreme weather conditions, due to climate change to natural or man-made hazards. In recent years, extreme loading has had an enormous impact on the resilience of structures as one of the most important characteristics of the sound design of structures, besides the structural integrity and robustness. Resilience can be defined as the ability of the structure to absorb or avoid damage without suffering complete failure, and it can be chosen as the main objective of design, maintenance and restoration for structures and infrastructure. The latter needs further clarification (which is done in this paper), to achieve the clarity of goals compared to robustness which is defined in Eurocode EN 1991-1-7 as: "the ability of a structure to withstand events like fire, explosions, impact or the consequences of human error, without being damaged to an extent disproportionate to the original cause". Many existing structures are more vulnerable to the natural or man-made hazards due to their material deterioration, and a further decrease of its loadbearing capacity, modifying the structural performance and functionality and, subsequently, the system resilience. Due to currently frequent extreme events, the design philosophy is shifting from Performance-Based Design to Resilience-Based Design and from unit to system (community) resilience. The paper provides an overview of such design evolution with indicative needs for Resilience-Based Design giving few conducted examples.

Analysis on the Yeongdong Downslope Windstorms Generation Condition Verified by Observation Cases (관측사례로 검증한 영동강풍 발생조건 분석)

  • Park, Yu-Jung;Han, Youn-Deok
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.405-420
    • /
    • 2021
  • Forest fire happens every year at Yeongdong, Gangwon-do, due to the strong local wind during the spring time and it causes a huge damage. This wind is named "Yangganjipung" or "Yanggangjipung" that blows along Yeongdong. However, the occurrence conditions of the wind have been still unclear. To identify the occurrence mechanism of local strong wind through three-dimensional observation data, Gangwon Regional Meteorological Administration performed Joint Gangwon-Yeongdong 3D Observation Project in 2020. The special observation was carried out for 6 times from March to April. The observation data was analyzed by focusing on the structure of synoptic pressure distribution and inversion layer. The result showed that the strength of wind is different depending on the latitude of low pressure, intensity of inversion layer, and changes on height in the south-high and north-low pressure distribution. As the interval of the upper and lower parts of the inversion layer was narrow, the strength of the wind became stronger, which is one of the observational characteristics of the springtime wind pattern at Yeongdong, Gangwon-do. In future, the clear mechanism of the local wind in the Yeongdong during the spring time is expected to be verified based on the accumulative observation data and close analysis.

Denoising Traditional Architectural Drawings with Image Generation and Supervised Learning (이미지 생성 및 지도학습을 통한 전통 건축 도면 노이즈 제거)

  • Choi, Nakkwan;Lee, Yongsik;Lee, Seungjae;Yang, Seungjoon
    • Journal of architectural history
    • /
    • v.31 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Traditional wooden buildings deform over time and are vulnerable to fire or earthquakes. Therefore, traditional wooden buildings require continuous management and repair, and securing architectural drawings is essential for repair and restoration. Unlike modernized CAD drawings, traditional wooden building drawings scan and store hand-drawn drawings, and in this process, many noise is included due to damage to the drawing itself. These drawings are digitized, but their utilization is poor due to noise. Difficulties in systematic management of traditional wooden buildings are increasing. Noise removal by existing algorithms has limited drawings that can be applied according to noise characteristics and the performance is not uniform. This study presents deep artificial neural network based noised reduction for architectural drawings. Front/side elevation drawings, floor plans, detail drawings of Korean wooden treasure buildings were considered. First, the noise properties of the architectural drawings were learned with both a cycle generative model and heuristic image fusion methods. Consequently, a noise reduction network was trained through supervised learning using training sets prepared using the noise models. The proposed method provided effective removal of noise without deteriorating fine lines in the architectural drawings and it showed good performance for various noise types.

A Study on the Characteristics of Underwater Explosion for the Development of a Non-Explosive Test System (무폭약 시험 장치 개발을 위한 수중폭발 특성에 대한 연구)

  • Lee, Hansol;Park, Kyudong;Na, Yangsub;Lee, Seunggyu;Pack, Kyunghoon;Chung, Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.322-330
    • /
    • 2020
  • This study deals with underwater explosion (UNDEX) characteristics of various non-explosive underwater shock sources for the development of non-explosive underwater shock testing devices. UNDEX can neutralize ships' structure and the equipment onboard causing serious damage to combat and survivability. The shock proof performance of naval ships has been for a long time studied through simulations, but full-scale Live Fire Test and Evaluation (LFT&E) using real explosives have been limited due to the high risk and cost. For this reason, many researches have been tried to develop full scale ship shock tests without using actual explosives. In this study, experiments were conducted to find the characteristics of the underwater shock waves from actual explosive and non-explosive shock sources such as the airbag inflators and Vaporizing Foil Actuator (VFA). In order to derive the empirical equation for the maximum pressure value of the underwater shock wave generated by the non-explosive impact source, repeated experiments were conducted according to the number and distance. In addition, a Shock Response Spectrum (SRS) technique, which is a frequency-based function, was used to compare the response of floating bodies generated by underwater shock waves from each explosion source. In order to compare the magnitude of the underwater shock waves generated by each explosion source, Keel Shock Factor (KSF), which is a measure for estimating the amount of shock experienced by a naval ship from an underwater explosionan, was used.

Pattern Analysis for Urban Spatial Distribution of Traffic Accidents in Jinju (진주시 교통사고의 도시공간분포패턴 분석)

  • Sung, Byeong Jun;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • Since traffic accidents account for the highest proportion of the artificial disasters which occur in urban areas along with fire, more scientific an analysis on the causes of traffic accidents and various prevention measures against traffic accidents are needed. In this study, the research selected Jinju-si, which belongs to local small and medium-sized cities as a research target to analyze the characteristics of temporal and spacial distribution of traffic accidents by associating the data of traffic accidents, occurred in 2013 with the causes of traffic accidents and location information that includes occurrence time and seasonal features. It subsequently examines the spatial correlation between traffic accidents and the characteristics of urban space development according to the plans of land using. As a result, the characteristics of accident distribution according to the types of accidents reveal that side right-angle collisions (car versus car) and pedestrian-crossing accident (car versus man) showed the highest clustering in the density analysis and average nearest neighbor analysis. In particular, traffic accidents occurred the most on roads which connect urban central commercial areas, high-density residential areas, and industrial areas. In addition, human damage in damage conditions, clear day in weather condition, dry condition in the road condition, and three-way intersection in the road way showed the highest clustering.

Explosion Characteristics and Flame Velocity of Suspended Plastic Powders (플라스틱 부유 분진의 폭발특성과 화염전파속도)

  • Han, Ou Sup;Lee, Keun Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.367-373
    • /
    • 2016
  • Many of plastic powders handled in industry are combustible and have the hazard of dust fire and explosion accidents. However poor information about the safe handling has been presented in the production works. The aim of this research is investigated experimentally on explosive characteristics of various plastic powders used in industry and to provide additional data with safety informations. The explosibility parameters investigated using standard dust explosibility test equipment of Siwek 20-L explosion chamber. As the results, the dust explosion index ($K_{st}$) of ABS ($209.8{\mu}m$), PE ($81.8{\mu}m$), PBT ($21.3{\mu}m$), MBS ($26.7{\mu}m$) and PMMA ($14.3{\mu}m$) are 62.4, 59.4, 70.3, 303 and 203.6[$bar{\cdot}m/s$], respectively. And flame propagation velocity during plastic dust explosions for prediction of explosive damage was estimated using a flame propagation model based on the time to peak pressure and flame arrival time in dust explosion pressure assuming the constant burning velocity.