• 제목/요약/키워드: Fire curves

검색결과 74건 처리시간 0.024초

구획실 내 액체 풀화재에 대한 디자인 화재곡선 적용 연구 (Application Study of Design Fire Curves for Liquid Pool Fires in a Compartment)

  • 백빛나;오창보;이의주;남동군
    • 한국화재소방학회논문지
    • /
    • 제31권4호
    • /
    • pp.43-51
    • /
    • 2017
  • 본 연구에서는 화재 수치계산에 사용하기 위한 새로운 디자인 화재곡선을 제안하였다. ISO 9705 구획실 내 형성된 옥탄과 헵탄연료 풀화재에 대해 기존에 제안된 2차곡선과 지수함수 형태의 디자인 화재곡선과 새롭게 제안된 디자인 화재곡선을 적용한 Fire Dynamics Simulator (FDS) 수치계산을 수행하였다. 여기서 얻어진 수치계산 결과와 실험에서 측정한 온도와 $O_2$, $CO_2$ 변화와 비교하여 디자인 화재곡선의 예측성능을 평가하였다. FDS 계산과 실험결과의 비교를 통해 2차곡선과 지수함수 형태의 디자인 화재곡선을 적용했을 때는 측정된 온도보다도 훨씬 완만하게 증가하고 감소하는 것을 알 수 있었다. 그러나 새로 제안한 2가지 디자인 화재곡선은 기존 디자인 화재곡선보다는 급격히 상승하여 실험결과에 좀 더 유사하게 나타나는 것으로 확인되어 실용적 관점에서 수치계산에 활용될 수 있음을 확인하였다.

건물 내 고체연료 화재에 대한 설계화재곡선 예측성능 평가 (Evaluation of the Prediction Performance of Design Fire Curves for Solid Fuel Fire in a Building Space)

  • 백빛나;오창보
    • 한국화재소방학회논문지
    • /
    • 제33권2호
    • /
    • pp.47-55
    • /
    • 2019
  • 건물형태의 공간 내에서 발생한 고체연료 화재에 대해 Fire dynamics simulator (FDS)을 이용하여 설계화재곡선의 예측성능을 실험결과와 비교하여 평가하였다. FDS의 연소모델로서는 EDC 2-step mixing controlled를 적용하였으며 검토된 설계화재곡선들은 기존 연구들에서 제안한 2-stage design fire (TDF) 곡선, Quadratic 및 Exponential design fire 곡선들이다. 시뮬레이션 결과는 건물 내 연기 전파과정이 설계화재곡선에 많은 영향을 받는 것을 확인하였다. 설계화재곡선을 이용한 시뮬레이션은 건물 내 실험온도결과에 대해 합리적으로 예측하고 TDF가 가장 온도를 무난하게 예측하는 것을 확인하였다. 그리고 각 설계화재곡선의 화학종 농도에 대한 예측은 실험과 충분히 예측하지 못하는 것을 확인하였다. 이점은 본 연구에서 사용한 연소모델은 고체연료 화재에 대한 시뮬레이션에 적합하지 않음을 나타내며 고체연료의 예측에 대한 FDS 연소모델에 대한 연구가 추가적으로 필요해 보인다.

Probabilistic seismic and fire assessment of an existing reinforced concrete building and retrofit design

  • Miano, Andrea;de Silva, Donatella;Compagnone, Alberto;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.481-494
    • /
    • 2020
  • In this paper, a probability-based procedure to evaluate the performance of existing RC structures exposed to seismic and fire actions is presented. The procedure is demonstrated with reference to an existing old school building, located in Italy. The vulnerability assessment of the building highlights deficiencies under both static and seismic loads. Retrofit operations are designed to achieve the seismic safety. The idea of the work consists in assessing the performance of the existing and retrofitted building in terms of both the seismic and fire resistance. The seismic retrofit and fire resistance upgrading follow different paths, depending on the specific configuration of the building. A good seismic retrofit does not entail an improving of the fire resistance and vice versa. The goal of the current work is to study the variation of response due to the uncertainties considered in records/fire curves selection and to carry out the assessment of the studied RC structure by obtaining fragility curves under the effect of different records/temperature. The results show the fragility curves before and after retrofit operations and both in terms of seismic performance and fire resistance performance, measuring the percent improving for the different limit states.

CFAST를 이용한 구획실 가스화재의 디자인 화재곡선 평가 (Evaluation of Design Fire Curves for Gas Fires in a Compartment Using CFAST)

  • 백빛나;오창보;황철홍
    • 한국화재소방학회논문지
    • /
    • 제32권4호
    • /
    • pp.7-16
    • /
    • 2018
  • 본 연구에서는 CFAST를 이용하여 구획실 가스연료 화재실험에 대한 디자인 화재곡선(Design fire curves, DF)의 예측성능을 평가하였다. 평가된 디자인 화재곡선은 이전의 연구에서 제안된 2-stage DF, Ingason이 제안한 Quadratic DF와 Exponential DF이며, 예측성능 평가를 위해 각 디자인 화재곡선을 CFAST의 입력조건으로 하여 시뮬레이션을 수행하였다. 시뮬레이션결과와 실험결과의 비교를 통해 구획실 내부의 공간평균온도와 $O_2$, $CO_2$ 농도에 대해 전반적으로 2-stage DF > Quadratic DF > Exponential DF 순으로 실험결과를 합리적으로 예측하는 것을 확인하였다. CFAST 시뮬레이션 결과를 통해서도 실험에서 보이는 구획실 내 개구부측과 내측에서의 온도와 $O_2$$CO_2$ 농도 차이를 예측할 수 없음을 명확히 확인하였다. 또한 CFAST는 구획실 가스연료 화재의 CO 농도와 하층부의 공간평균온도에 대한 예측에 한계가 있음을 확인하였다.

Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete

  • Yu, Kequan;Lu, Zhoudao
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.199-213
    • /
    • 2015
  • The residual fracture toughness of post-fire normal-strength concrete subjected up to $600^{\circ}C$ is considered by the wedge splitting test. The initial fracture toughness $K_I^{ini}$ and the critical fracture toughness $K_I^{un}$ could be calculated experimentally. Their difference is donated as the cohesive fracture toughness $K_I^c$ which is caused by the distribution of cohesive stress on the fracture process zone. A comparative study on determining the residual fracture toughness associated with three bi-linear functions of the cohesive stress distribution, i.e. Peterson's softening curve, CEB-FIP Model 1990 softening curve and Xu's softening curve, using an analytical method is presented. It shows that different softening curves have no significant influence on the fracture toughness. Meanwhile, comparisons between the experimental and the analytical calculated critical fracture toughness values further prove the validation of the double-K fracture model to the post-fire concrete specimens.

도로터널 라이닝 화재손상 평가를 위한 가열로 개발에 관한 연구 (A Study on Development of Furnance for Road Tunnel Lining Fire Damage Evaluation)

  • 박경훈;김흥열;김형준
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.479-483
    • /
    • 2008
  • There are no International Standards or Criteria pertaining to fires inside tunnels at the moment, but there are some fire-related regulations in some advanced countries such as Germany and the Netherlands where some fire-related studies have been expedited. Germany has established regulations related to the safety of structures by stipulating Fire Curves of RABT and EBA Tunnels. Also, the Netherlands has established the resistance capacity of structures by stipulating RWS curve so that they can prevent the adjacent area from being damaged due to a tunnel collapse. Hydrocarbon Fire Curve is the standard assessing the behaviour of a structure in a serious fire, by increasing the heating speed and the maximum temperature of ISO 834 Curve, while MHC Fire Curve, which was established in France, realizes more serious fire conditions. In this study, we aimed to develop the basis of full-sized experiments, with which you can assess the fire-resisting capacity against the fire strength of concrete PC panel lining, through the realization of various tunnel fire curves as mentioned above, by developing the heating furnace suitable for the requirements of Fire-Resisting Standards, with which you can assess the fire damage of tunnel concrete lining. We have developed various conditions of the heating furnace and the method to install a thermo couple within the furnace based on EFNARC and KS F2257-1. We have also conducted a calibrating experiment in order to secure its reliability.

  • PDF

가열온도곡선 변화에 따른 고강도 콘크리트의 폭렬방지특성 (Spalling Prevention of High Strength concrete Corresponding to the Various Heating Curves)

  • 한천구;배장춘
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.127-134
    • /
    • 2009
  • 본 연구는 고강도 콘크리트의 복합유기섬유 혼입률 변화 및 ISO와 RABT의 가열온도곡선 변화에 따른 내화시험을 실시한 후 폭렬방지성상 및 잔존압축강도 특성 등을 분석한 것으로, 그 결과를 요약하면 다음과 같다. 복합유기섬유 혼입 콘크리트의 기초적 특성으로 유동성은 섬유혼입률이 증가할수록 직선적으로 저하하는 경향이었고, 공기량은 약간의 증가 또는 감소의 경향은 있었으나 큰 차이 없었으며, 28 일 압축강도는 완만한 감소경향을 나타내었다. 내화특성으로, RABT 가열온도곡선의 경우는 ISO 가열온도곡선에 비해 복합 유기섬유 혼입률이 많은 범위까지 폭렬양상을 나타내었으나, 주로 박리폭렬일뿐 내부까지 극심한 폭렬양상은 발생하지 않았다. 결국 W/B 25%인 고강도 콘크리트의 경우 ISO 가열온도곡선은 섬유의 혼입률 0.04%이상에서, RABT 가열온도곡선의 경우는 섬유의 혼입률 0.10%이상에서 폭렬이 방지되는 것으로 나타났다. 가열온도곡선 변화에 따른 질량감소율은 폭렬이 방지된 경우 ISO 가열온도곡선은 7%전후, RABT 가열온도 곡선은 9%전후로 나타났다. 가열온도곡선변화에 따른 잔존압축강도율은 폭렬이 방지된 경우 ISO 가열온도 곡선은 50%~60%, RABT 가열온도곡선은 30%~35%를 나타내었다.

콘칼로리미터를 이용한 내장판용 복합재료의 화재특성 (Fire Characteristics of Composites for Interior Panels Using Cone calorimeter)

  • 이철규;정우성;이덕희
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.55-59
    • /
    • 2004
  • Composite materials were used widely due to merit of light weight, low maintenance cost and easy installation. But it is the cause of enormous casualties to men and properties because of weak about the fire. Particularly, it is more serious in case of subway train installed composite materials. For this reason, experimental comparison has been done fur measuring heat release rate(H.R.R) and smoke production rate(S.P.R) of interior panels of electric motor car using cone calorimeter. A high radiative heat flux of 50kW/㎡ was used to bum out all materials and to simulate the condition of fully developed fire case in the tests. It was observed that Heat Release Rate and Smoke Production Rate curves were dependent on the kinds of the interior materials. From the heat release rate curves, the sustained ignition time, peak heat release rate and total heat release rate were deduced, These data are useful in classifying the materials by calculating two parameters describing the possibility to flashover.

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.