• Title/Summary/Keyword: Fire blight

Search Result 57, Processing Time 0.027 seconds

Molecular Basis of the Hrp Pathogenicity of the Fire Blight Pathogen Erwinia amylovora : a Type III Protein Secretion System Encoded in a Pathogenicity Island

  • Kim, Jihyun F.;Beer, Steven V.
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2001
  • Erwinia amylovora causes a devastating disease called fire blight in rosaceous trees and shrubs such as apple, pear, and raspberry. To successfully infect its hosts, the pathogen requires a set of clustered genes termed hrp. Studies on the hrp system of E. amylovora indicated that it consists of three functional classes of genes. Regulation genes including hrpS, hrpS, hrpXY, and hrpL produce proteins that control the expression of other genes in the cluster. Secretion genes, many of which named hrc, encode proteins that may form a transmembrane complex, which is devoted to type III protein secretion. Finally, several genes encode the proteins that are delivered by the protein secretion apparatus. They include harpins, DspE, and other potential effector proteins that may contribute to proliferation of E. amylovora inside the hosts. Harpins are glycine-rich heat-stable elicitors of the hypersensitive response, and induce systemic acquired resistance. The pathogenicity protein DseE is homologous and functionally similar to an avirulence protein of Pseudomonas syringae. The region encompassing the hrpldsp gene cluster of E. amylovora shows features characteristic of a genomic island : a cryptic recombinase/integrase gene and a tRNA gene are present at one end and genes corresponding to those of the Escherichia coli K-12 chromosome are found beyond the region. This island, designated the Hrp pathogenicity island, is more than 60 kilobases in size and carries as many as 60 genes.

  • PDF

Survey on the Occurrence of Apple Diseases in Korea from 1992 to 2000

  • Lee, Dong-Hyuk;Lee, Soon-Won;Choi, Kyung-Hee;Kim, Dong-A;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.375-380
    • /
    • 2006
  • In the survey from 1992 to 2000, twenty-eight parasitic diseases were observed in major apple producing areas in Korea. The predominant apple diseases were white rot(Botryosphaeria dothidea), Marssonina blotch(Marssonina mali), Valsa canker(Valsa ceratosperma), Alternaria leaf spot(Alternaria mali), and bitter rot(Collectotrichum gloeosporioides and C. acutatum). Apple scab that reappeared in 1990 after disappearance for 15 years was disappeared again since 1997. A viroid disease(caused by apple scar skin viroid) was newly found in this survey. The five diseases, fire blight(Erwinia amylovora), black rot(Botryosphaeria obtusa), scab(Cladosporium carpophilum), Monochaetia twig blight(Monochaetia sp.), and brown leaf spot(Hendersonia mali), which had once described in 1928 but no further reports on their occurrence, were not found in this survey. However, blossom blight(Monilinia mali), brown rot(Monilinia fructigena), and pink rot(Trichothecium roseum), which did not occur on apple after mid 1970s, were found in this survey.

Investigation on the Management Status of Pear and Apple Orchards Where Fire Blight Disease Was Partially Controlled in Korea (국내 과수화상병을 부분 방제한 배와 사과 과원의 관리 현황 조사)

  • Jun Woo Cho;Eunjung Roh;Yong Hwan Lee;Seong Hwan Kim
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.316-320
    • /
    • 2023
  • Recently, the domestic plant disease control policy for fire blight has been implemented partial control in addition to burial control. In this study, an on-site management survey was conducted targeting orchards that implemented partial disease control from 2019 to 2020 in order to find efficient implementation methods for partial disease control. As a result of an investigation into 22 pear and apple orchards in Cheonan and Chungju, 7 orchards were buried. The upper part of the cut infected plants was burned at 16 orchards and covered with plastic vinyl after lime treatment at 6 orchards. The lower stumps of cut infected plants were burned at 7 orchards and covered with plastic vinyl after lime treatment at 15 orchards. There were two orchards where suckers appeared on the stumps even though covers were applied. There was no infection by Erwinia amylovora in the suckers. The conservation condition of lime treatment was good, but warning signs were absent at 6 orchards. Most orchards treated the stumps and surrounding areas with glyphosate-isopropylamine herbicide. The effect of partial control was judged to be safe.

Influence of M.7 Apple Rootstock on Productivity and Fruit Quality of High Density 'Fuji', 'Hongro' and 'Sansa' Apple Trees (M.7 사과 대목이 고밀식 '후지' , '홍로' , '산사' 사과나무의 생산량 및 과실품질에 미치는 영향)

  • Young Soon Kwon;Jeong-Hee Kim;Dong-Hoon Sagong;Jong Taek Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.239-252
    • /
    • 2023
  • Most apple trees in South Korea are grafted on M.9 and M.26 rootstocks; however, these rootstocks are susceptible to fire blight. Although M.7 rootstocks are moderately resistant to fire blight, they tend to exhibit excessive vigor, which is unsuitable for high-density planting, unless weak cultivars are used. This study investigated the vegetative growth, yield, and fruit quality of apple trees grafted onto M.7, M.9, or M.26 rootstocks to assess the feasibility of establishing high-density apple orchards domestically using the M.7 rootstock a period of seven years (1-7 years after planting). Rootstocks were tested using three cultivars with contrasting induced vigor and harvesting times: vigorous and late-maturing 'Fuji,' moderate vigor and middle-maturing 'Hongro,' and low vigor and early-maturing 'Sansa.' The planting density was maintained constant, with 190 trees per 10 a. Primary thinning (leaving only the king fruit on clusters) was performed, whereas secondary thinning (controlling crop load) was not. Vegetative growth, accumulated yield per 10 a, and yield efficiency varied depending on cultivars and rootstocks; however, the cultivars had a more notable effect on fruit quality than the rootstocks. Biennial bearing often occurred in the M.26 rootstock. 'Fuji'/M.7 was overly vigorous for high-density planting. The fruit quality and accumulated yield per 10 a of M.7 were similar to those of M.9 with the 'Hongro' and 'Sansa' cultivars. In particular, 'Hongro'/M.7 did not show tree vigor reduction due to heavy crop load, and the degree of biennial bearing in 'Sansa'/M.7 was not particularly high. These results indicated that high-density apple planting using the M.7 rootstock was achievable using the 'Hongro' and 'Sansa' cultivars.

The Effect of Daily Minimum Temperature of the Period from Dormancy Breaking to First Bloom on Apple Phenology (휴면타파부터 개화개시까지의 일 최저온도가 사과 생물계절에 미치는 영향)

  • Kyung-Bong Namkung;Sung-Chul Yun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.208-217
    • /
    • 2023
  • Accurate estimation of dormancy breaking and first bloom dates is crucial for effective fire blight control by disease model such as Maryblyt in apple orchards. The duration from dormancy breaking to first bloom in apple trees was influenced by daily minimum temperatures during the dormant period. The purpose of this study is to investigate the relationship between minimum temperatures during this period and the time taken for flowering to commence. Webcam data from eight apple orchards, equipped by the National Institute of Horticultural and Herbal Science, were observed from 2019 to 2023 to determine the dates of starting bloom (B1). Additionally, the dormancy breaking dates for these eight sites were estimated using an apple chill day model, with a value of -100.5 DD, based on collected weather data. Two regressions were performed to analyze the relationships: the first regression between the number of days under 0℃ (X1) and the time from calculated dormancy breaking to observed first bloom (Y), resulting in Y = 0.87 × X1 + 40.76 with R2 = 0.84. The second regression examined the starting date of breaking dormancy (X2) and the duration from dormancy breaking to observed first bloom (Y), resulting in Y = -1.07 × X2 + 143.62 with R2 = 0.92. These findings suggest that apple anti-chill days are significantly affected by minimum temperatures during the period from dormancy breaking to flowering, indicating their importance in fire blight control measures.

Effect of Acibenzolar-S-methyl and Rahnella aquatilis (Ra39) on Chitinase and β-1, 3-glucanase Activities and Disease Resistance of Apple Plants

  • Abo-Elyousr, A.M. Kamal;Sallam, M.A.A.;Hassan, M.H.A.;Zeller, W.
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • The effect of Acibenzolar-S-methyl (ASM) and Rahnella aquatilis Ra39 against apple fire blight disease caused by Erwinia amylovora were tested as a possible alternative to streptomycin. In vitro studies, no inhibition effect against the pathogen was found when ASM was tested. Under greenhouse conditions, application of R. aquatilis Ra39 with the highly susceptible M26 rootstock resulted in a marked disease suppression. Application of ASM and strain Ra39 caused a high decrease of the disease, 82% and 58% respectively; this was correlated with a reduction of the growth of the pathogen within host plants up to 64% and 49.5% respectively. Further studies in the field under artificial infection condition during full bloom revealed that application of ASM and R. aquatilis Ra39 with Gala variety resulted in a control effect up to 21 and 29% respectively. In physiological studies, enhanced activities of PR-proteins (chitinase and $\beta$-1, 3-glucanase) were detected, which are well known as biochemical markers for systemic acquired resistance. Application of ASM to apple shoots caused the highest chitinase activity followed by strain Ra39. The enzyme activity was increased after 2, 4 and 6 days from application. In addition, ASM-treatment caused the higher $\beta$-1, 3-glucanase activity than strain Ra39. Maximum enzyme activity was recorded after 6 days from application and then decreased after 8 and 10 days from application.

Survey of Oxolinic Acid-Resistant Erwinia amylovora in Korean Apple and Pear Orchards, and the Fitness Impact of Constructed Mutants

  • Ham, Hyeonheui;Oh, Ga-Ram;Park, Dong Suk;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.482-489
    • /
    • 2022
  • Fire blight caused by Erwinia amylovora (Ea) is a devastating disease in apple and pear trees. Oxolinic acid (OA), a quinolone family antibiotic that inhibits DNA gyrase, has been employed to control fire blight in South Korea since 2015. The continuous use of this bactericide has resulted in the emergence of OA-resistant strains in bacterial pathogens in other countries. To investigate the occurrence of OA-resistant Ea strains in South Korea, we collected a total of 516 Ea isolates from diseased apple and pear trees in 2020-2021 and assessed their sensitivities to OA. We found that all isolates were susceptible to OA. To explore the possibility of emerging OA-resistant Ea by continuous application of OA, we exposed Ea stains to a range of OA concentrations and constructed OA-resistant mutant strains. Resistance was associated with mutations in the GyrA at codons 81 and 83, which result in glycine to cysteine and serine to arginine amino acid substitutions, respectively. The in vitro growth of the mutants in nutrient media and their virulence in immature apple fruits were lower than those of wild-type. Our results suggest that OA-resistance decreases the fitness of Ea. Future work should clarify the mechanisms by which OA-resistance decreases virulence of this plant pathogen. Continuous monitoring of OA-resistance in Ea is required to maintain the efficacy of this potent bactericide.

Influence of the Exposed Length of Rootstock on Vegetative Growth and Productivity of 'Sansa' Apple Trees Grafted on M.7 or M.9 (M.7 및 M.9에 접목된 '산사' 사과나무의 대목 노출 길이가 영양생장 및 생산량에 미치는 영향)

  • Young Soon Kwon;Jeong-Hee Kim;Dong-Hoon Sagong;Jong Taek Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.297-310
    • /
    • 2023
  • M.7 rootstock is moderately resistant to fire blight. However, M.7 is generally too vigorous for high-density apple systems, but it can be grafted onto cultivars that exhibit weak tree growth, such as 'Sansa'. This study investigated the vegetative growth, yield, and fruit quality of 'Sansa' apple trees grafted on M.7 or M.9 rootstocks to assess the feasibility of establishing domestic high-density apple systems using M.7 and to determine the optimum exposure length for rootstocks. Trees were planted with exposed rootstock lengths of 5, 10, and 15 cm. The vegetative growth of apple trees grafted onto M.7 was greater than that of M.9 and vegetative growth tended to decrease as the exposed length of rootstock increased. However, the differences in yield per tree, average weights, soluble solids contents, and titratable acidity due to the rootstock and its exposure length varied. The accumulated yield over a 10 year period and the yield efficiency of M.7 were lower than that of M.9 and the yield efficiency tended to decrease as the exposed length of rootstock increased. When apple trees were grafted onto M.9, biennial bearing and tree vigor weakening occurred if the exposed length of the rootstock was over 10 cm. Conversely, when apple trees were grafted onto M.7, vegetative growth was excessive if the exposed length of rootstock was below 10 cm. Based on the results from this study, the optimum M.7 and M.9 exposure lengths for 'Sansa' were 15 cm and 5 cm, respectively.

Evaluation of Disease Occurrence by Cultivar, Sowing Date and Locational Difference in Korean Soybean Fields (콩의 품종, 파종시기 및 지역적 차이에 대한 병 발생 평가)

  • Kim, Hong-Joe;Oh, Ji-Yeon;Kim, Dong-Kwan;Yun, Hong-Tai;Jung, Woo-Suk;Hong, Jeum-Kyu;Kim, Ki-Deok
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.176-182
    • /
    • 2010
  • Occurrence of plant diseases is dependent on various factors in the agricultural system. Due to recent extensive environmental climate changes, i.e. global warming, agricultural systems such as planting dates and cultivars are being affected. Gradual transition in disease occurrence and incidence in the agricultural fields can also be affected by direct and/or indirect environmental changes. In this study, we evaluated disease occurrence and incidence in soybean plants to investigate whether it could be related with cultivars, planting dates and geographical differences in Korea in 2008. Soybean cultivars including 'Taekwang', 'Pungsan', 'Cheongja 3', 'Saeol', and 'Dawon' were planted in four different dates, May 15, June 1, June 15, and June 30, in two locations, Suwon, and Naju. Soybean diseases such as wild fire and bacterial pustule were mainly found depending on cultivars, planting dates, and areas. Wild fire occurred severely on cv. 'Taekwang' while bacterial blight did on cv. 'Dawon' among tested cultivars. Disease developments of wild fire and bacterial blight generally decreased in delayed planting regardless of cultivars.