• 제목/요약/키워드: Fire Test

Search Result 1,896, Processing Time 0.03 seconds

A study on the fire resistance properties of high strength concrete by incorporation of Polymix fiber (폴리믹스 혼입에 의한 고강도 콘크리트의 폭렬방지 방안에 관한 연구)

  • Kim, Jeong-Jin;Lee, Sang-Hyun;Lee, Joo-Ho;Shin, Jae-Kyung;Park, Jong-Ho;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.395-396
    • /
    • 2010
  • The purpose of this research is that development of fire-high resistance concrete for high-rise buildings is carried out with a test, which is for confirmation of fire-resistance capacity of 80MPa high-strength concrete. In this test, self-developed Polymix to confirm fire-resistance capacity of high-strength concrete in domestic high-rise buildings recently is applied.

  • PDF

A Study on the loading test for of slab by Fire damaged (화재피해를 입은 RC 슬래브의 재하실험에 관한 연구)

  • Lee, Kyu Min;Kang, Seung Goo;Kim, Dong Jun;Kwon, Young Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.50-51
    • /
    • 2013
  • In case of Korea, it goes frequently that underground parks has been burned. Based on standard temperature time curve(ISO-834), gerber, walls, slab of structures are constructed. However, Standard temperature time Curve is not considered that buildings are affected by vehicle fire. that is why it has the hazard that makes building reinforcement feeble. Based on the result that got from vehicle experiment before, we made four RC slab in this experiment and set the fire severity. according to the loading experiment after heating, we measured the effects that makes reinforcement and shape changes. Furthermore, we examined the safty of the structure by comparing before and after heating.

  • PDF

Numerical study on the impact response of SC walls under elevated temperatures

  • Lin Wang;Weiyi Zhao;Caiwei Liu;Qinghong Pang
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.345-352
    • /
    • 2023
  • A thermal-mechanical coupling finite element model of the steel-plate concrete composite (SC) wall is established, taking into account the strain rate effect and variation in mechanical and thermal properties under different temperatures. Verifications of the model against previous fire test and impact test results are carried out. The impact response of the SC wall under elevated temperatures is further investigated. The influences of the fire exposure time on the impact force and displacement histories are discussed. The results show that as the fire exposure time increases, the deflection increases and the impact resistance decreases. A formula is proposed to calculate the reduction of the allowable impact energy considering the fire exposure time.

A Study on the Fire Resistance of yLRC Composite Columns with Steel Sheet Forms and Angles (강재 영구거푸집을 사용한 yLRC 합성기둥의 내화성능 연구)

  • Kim, Bo Ram;Kang, Seong Deok;Kim, Hyung Geun;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.365-375
    • /
    • 2008
  • The main objective of this paper is to study the behaviour of yLRC composite columns at elevated temperatures by experimental test. The effects of load ratios, cross-section size and fire protection for the yLRC columns were investigate d by the test and compared using the heat transfer analysis perfo rmed based on the finite element program ANSYS 10.0 using the ISO834 standard fire curve, following the main guidelines proposed by the EC4 Part 1.2. As heat transfer is the movement of heat by conduction, convection, and radiation, and as temperature inside an object varies by position and time, time. As the steel's thermal conductivity is higher than that of concrete, steel loses its strength rapidly in a high-temperature situation such as a fire. Fire resistance performance of the yLRC composite column under fire conditions was evaluated througheat transfer analysis for parametric study.

Analysis on Activation Characteristic of Heat Detectors in a Compartment Fire (실내화재에서의 열감지기 동작특성 분석)

  • Ryu, Hocheol
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.598-608
    • /
    • 2014
  • The first operation of alarm system starts at a detector. And the largest effect is produced on the operation of detector by the fire source position and installation position. Nevertheless, the Korean standard for the installation of detector only specifies matters of fire detector installation according to area and height, without consideration of installation position and fire source position. Therefore, this study carried out a fire test in consideration of detector installation position and fire source position (5 places) in order to minimize casualties owing to the fast operation of fire detector when a fire occurred. Considering that it took the longest time for a detector close to a wall to work in the results of this test, it was possible to find that a minimum clearance to the wall was required.

Effect of External Thermal Insulation Composite System with a Non-combustible Calcium Silicate Based Mineral on The Mitigation for Reducing Fast Spread of Flame (불연성 무기 단열재를 화재확산 방지구조로 적용한 외단열 마감시스템의 화재성능)

  • Lee, Jong-Chan;Park, Jong-Chul;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.397-403
    • /
    • 2016
  • As a building energy saving standard strengthened, The number of building installed external thermal insulation composite system(ETICS) using EPS insulation increased. But frequent fire accident in the buildings installed EIFS using EPS led to strengthening of building fire safety regulation. This study is for fire property of EPS ETICS reinforced with noncombustible calcium silicate-based mineral insulation as a fire spread prevention structure(FSPS). Fire test for large scale wall by ISO 13785-2 was applied and results showed EPS EIFS with FSPS got 3~8 times superior fire safety than normal EIFS by visual investigation. Temperature and heat flux measurement results, which data of upside of specimen were lower than downside, also supported fire safety of EIFS with FSPS.

Study on the Development and the Effects of a Fire Safety Education Program for the Elderly (노인을 위한 소방안전교육 프로그램 개발 및 효과분석)

  • Kim, Youngdo;Kim, Youngbin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • This study analyzed the effects influencing the elderly's knowledge on fire safety and practices of fire safety accident prevention after developing a Fire Safety Education Program for the elderly. The program was developed through verification using some experts and a pilot study after selecting the objective, goals, contents, and teaching & learning methods of the program based on the basic survey and literature review. The effects of the program were verified by conducting some non-equivalent control group pre- and post-tests after dividing the targets into the experimental group (the Fire Safety Education Program for the elderly was implemented) and control group (only printed hand-outs were given) among 48 elderly people no younger than 65 years of age. A paired t-test revealed some statistically significant differences between the scores of the pre- and post-tests of the experimental and control groups. ANCOVA found that the effects of the program were significantly higher than those of the printed hand-outs because the post-test scores of the experimental group were higher than those of the control group.

Experimental and numerical studies on the shear connectors in steel-concrete composite beams at fire and post fire exposures

  • Mirza, Olivia;Shil, Sukanta Kumer;Rashed, M.G.;Wilkins, Kathryn
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.529-542
    • /
    • 2021
  • Shear connectors are required to build composite (concrete and steel) beams. They are placed at the interface of concrete and steel to transfer shear and normal forces between two structural components. Such composite beams are sensitive to provide structural integrity when exposed to fire as they loss strength, stiffness, and ductility at elevated temperature. The present study is designed to investigate the shear resistance and the failure modes of the headed stud shear connectors at fire exposure and post-fire exposure. The study includes ordinary concrete and concrete with carbon nanotubes (CNTs) to build composite (concrete-steel) beams with structural steel. Experimental push tests were conducted on composite beams at ambient and elevated temperatures, such as 200, 400 & 600℃. Moreover, push tests were performed on the composite beams after being exposed to 200, 400 & 600℃. Push test results illustrated the reduction of ultimate shear capacity and stiffness of headed stud shear connectors as the temperature increased. Although similar values of ultimate shear were obtained for the headed stud connectors in both ordinary and CNT concrete, the CNT modified concrete reduced the concrete spalling and cracking compared to ordinary concrete and was observed to be effective at temperatures greater than 400℃. All specimens showed a lower shear resistance at fire exposures compared to the corresponding post-fire exposures. Moreover, numerical simulation by Finite Element (FE) analyses were carried out at ambient temperature and at fire conditions. The FE analysis results show a good agreement with the experimental results. In the experimental studies, failure of all specimens occurred due to shear failure of headed stud, which was later validated by FE analyses using ABAQUS.

Applying Fire Risk Analysis to Develop Fire-safe Modular Walls: Guidance to Material Selection, Design Approach and Construction Method

  • Lim, Seokho;Chung, Joonsoo;Kim, Mihyun Esther
    • Architectural research
    • /
    • v.24 no.2
    • /
    • pp.21-27
    • /
    • 2022
  • For the past decade, South Korea had experienced catastrophic building fires, which resulted in consider-ably high number of casualties. This motivated research to develop fire-safe wall assemblies. In this study Fire Risk Analysis (FRA) is conducted as part of the project designing phase to ensure fire safety of the final product. Traditional approach was to consider fire performance at the end of the designing stage, when PASS/FAIL fire test results are required to be submitted to the Authority Having Jurisdiction (AHJ). By applying a fire risk analysis to guide the designing phase, overall fire safety of a wall assembly can be achieved more systematically as conducting FRA allows designers to clearly identify elements that are more vulnerable to fire and simply replace them with other practical options. Severity of fire risk is determined by considering the fire hazards of a wall assembly such as the exterior layer, insulation, vertical connectivity, and external ignition sources (e.g., photovoltaic panels). Frequency of fire risk is assessed based on the factors affecting fire likelihood, which are air cavity and fire-stopping applied in the design, and random design changes occurring during on-site construction. Fire risk matrix is proposed based on these fire risk factors and efforts to reduce the fire risk level associated with the wall assembly are given by systematically assessing the fire risk factors identified from fire risk analysis. Current study demonstrates how fire risk analysis can be applied to develop fire-safe walls by reducing the relevant fire risks- both severity and frequency.

화재를 당한 콘크리트 구조물의 내구성 진단

  • Seo, Chi-Ho
    • Fire Protection Technology
    • /
    • s.18
    • /
    • pp.17-20
    • /
    • 1995
  • A diagnosis the concrete structure suffered a fire has an end in the view of safe investigation of structures and judgement of the re-use for the existing facilities to close examination of structural resisting forces and the extent of damages. And then, in this report, it has an object of references needed to fit management of concrete struc-ture suffered a fire, with describing epitome of conerete crack examination, displacement strain investi-gation, stregth examination, steel bar probing & carbonation test.

  • PDF