• Title/Summary/Keyword: Fire Test

Search Result 1,896, Processing Time 0.029 seconds

A Study on the Slip Test of Shear Connector in Fire (전단 연결재의 고온 성능 평가에 관한 연구)

  • Han, Sang-Hoon;Park, Won-Sup;Lee, Choul-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.48-51
    • /
    • 2008
  • Shear connector is the element which resist in the horizontal shear force between steel and concrete of composite members and the stud bolt is often used because of its constructional convenience and serviceability. Although the push-out test is the most common method to evaluate shear slip behaviour, it is suitable for only room temperature conditions. In this study, we investigated about shear force, temperature distribution and slip displacement of shear connector in high temperature through the modified push-out test with electronic furnace invented for steel part heating.

  • PDF

An Experimental Study on the Risk of Vertical Flame for a Extended-Balcony (발코니 확장에 따른 수직화염 확대 위험성에 관한 실험적 연구)

  • Shin, Yi-Chul;Youn, Yoo-Hyuk;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.283-288
    • /
    • 2008
  • Since installing a balcony can significantly reduce the spread of fire, fire spread to the upper levels was confirmed, comparing the cases with and without balcony extension. It was confirmed that the fire can spread not only to the next higher level but also to two levels higher due to the outburst of flame which reached a significant temperature in the case without balcony, while the possibility of fire spread to the upper level reduced considerably with the balcony. this study is compared and analyzed to vertical diffusion appearance of an externally venting flame. An installed balcony is also applied to fire test 6.54kW to analyze about effect of a balcony.

  • PDF

A Study on the Actual Problems of Field Fire Supervision System(Focus to Dajeon City) (상주 소방감리업무의 현실적 문제점에 대한 연구 -대전지역을 중심으로-)

  • Choi, Man-Chul;Kim, Byung-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • In this study, supervision resides fire mission against problems associated with case studies and surveys done through the side of the field work, technical personnel, fire management, including fire code aspects classified into three kinds of items dealt with the issue. Started at the scene of the problem in terms of performance, the issue of the construction process, mainly dealt with the issue at the time of completion. Fire management side, supervisor of technical personnel, human resources management issues, contract issues, fire code level, the frequent revisions of fire regulations, supervision, processing delays of the resulting report, the problem resides with the expansion of Fire Supervision target was mentioned. Finally, the target for each hierarchical supervision, and resident supervisor of the need for supervision of work performance test was carried out by the correlation.

A Experimental Study on Window Glass Breakage in Compartment Fires (구획 화재시 창유리 파괴 현상에 관한 실험적 연구)

  • 이수경;김종훈;최종운;이정훈
    • Fire Science and Engineering
    • /
    • v.12 no.3
    • /
    • pp.21-30
    • /
    • 1998
  • This is a study on the relation of window glass breaking time, shape, and vent condition in a compartment fire through the experiment. We recognize the phenomenon that window glass breakage in a compartment fire be arose from the thermal stresses due to the temperature temperature difference was 233.4$^{\circ}C$ for test 1-3, 138$^{\circ}C$ for text 2-1, 83.6$^{\circ}C$ for test 2-2. The interior test 2-2, 400.9$^{\circ}C$ for test 2-3. so if the flame didn't reach at the surface of window glass, the breakage of glass occure at 40$0^{\circ}C$~50$0^{\circ}C$. when the fire size reached to 1541.14kW, the window might be broken by thermal stress. But window glass was not collapsed.

  • PDF

Systems Engineering based Live Fire Test of Weapon Systems (무기체계 실사격 시험의 시스템공학 적용)

  • Yoo, Byung-Jik;Hwang, Gyu-Hwan;Ryu, Chung-Ho;Kim, Moon-Ki;Ye, Sung-Hyuck;Han, Uk-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • We propose the live fire test process model based on systems engineering which consists of 4 phases i.e., review, setup, conduct and result. We also suggest the 4 phases acquisition model consisting of planning, execution, evaluation and disposal for test infrastructure. CMMI, TMMi and PMBOK are referred and hierarchial analysis method are adopted in developing the models. Thus, the detailed sub-processes are designed after defining higher level processes first. The higher level processes are defined by extracting common areas of all the test types. The low level processes for each specific test are designed by tailoring the higher level processes. By applying the proposed test process models into collaboration tool and information system, effective and systematic test processes for weapon systems are established.

Standardization of the Performance Test Procedure for Smoke Control System (제연설비 성능시험방법의 표준화)

  • Kwark, Ji-Hyun
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.21-28
    • /
    • 2006
  • Since hot toxic gas included in the fire is the most principal reason of the death and has the fluid mechanical characteristics unlike air, smoke control method appropriate for the figure and structure of a fire room is needed and each unit of the smoke control system requests high performance according to this characteristics, for which performance test procedures and evaluation criteria must be established. Domestic criteria involved with the smoke control consist of the pre-investigation by documents and the part inspection, which has lots of problems because they are far from the performance based evaluation method compared with the references of developed countries. Consequently, domestic and international references were compared and analyzed, problems being emerged and standardization scheme of the test procedure was presented.

An Analytic Study on Structural Stability according to Boundary Conditions and H-section Column Lengths Made of An Ordinary Grade Structural Steels (SS 400) at High Temperatures (일반구조용 강재(SS 400)기둥부재의 경계조건과 부재 길이변화에 따른 고온 내력의 해석적 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.20-25
    • /
    • 2014
  • Steel column is very important an structural element in steel framed building and plays a key role in sustataining the applied external load. Generally, the fire resistance performance of steel column has been executed by application of fire standard and vertical furnace having a limitation in height. Therefore, the fire resistance test was conducted with a H-section column having 3500 mm in length and hinge to hinge boundary condition. And the fire protective material derived from the fire test can be applied to any kind of boundary conditions and lengths. However, it is hard to determine the fire resistance. In this paper, to make sure the structural stability of them at high temperature according to various boundary conditions and lengths of H-section column, an analysis was done by using the mechanical properties and an heat transfer theory.

A Study on Flame Spread Prevention of Sandwich Panel (복합자재 화재확산방지구조에 대한 연구)

  • Cho, Nam-Wook;Kim, Do-Hyun;Shim, Ji-Hun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.84-90
    • /
    • 2015
  • Multi-layered material (sandwich panel) consists of double-sided steel plate which is incombustible material or similar material and core material which is not incombustible material. In case of sandwich panel which uses combustible material as insulation, flames spread inside the steel plate at the time of fire so that it is difficult to extinguish fire from the outside and flames spread rapidly and may cause the building to collapse. The current Building Act requires the sandwich panel to secure fire-retardant performance according to the purpose and size of building. In this study, the fire spreading prevention structure applied to partial exterior walls was applied to multi-layered material and its effect was measured through full scale fire test and the possibility to secure fire safety of buildings by applying the fire spreading prevention structure to multi-layered material in future was presented.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (고온화재조건 콘크리트 라이닝의 하중비에 따른 폭렬영향성 및 화재손상특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Ahn, Chan-Sol;Kwon, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • The fire in tunnel, when failed to extinguish at early stage, tends to easily develop to high temperature and spread to entire area of the tunnel because of considerable level of fire load and smoke control facility within the tunnel, resulting in severe damage to the people and tunnel structure. This study was intended to carry out the fire test with MHC fire curve, a scenario, which has the most rapid fire rise, on assumption of load ratio of 1, 20, 40, 60 and 70%, so as to identify the thermal characteristics of the concrete against spalling and the range of fire damage. The specimen was small scale sample as defined by EFNARC and the mixing ratio was based on 24 MPa, which is considered to be the normal strength. As a result of test, 16mm spalling was occurred on the lining under the non-load condition, while no spalling was occurred with 20% and 40% of load ratio. In case of 60% of load ratio, 24 mm of spalling was occurred and it failed in 10 minutes after heating in case of 70% load condition.

Activation Conditions of Sprinkler Head Considering Fire Growth Scenario (화재성장시나리오에 따른 스프링클러 헤드의 작동조건)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • The aim of this study is to investigate the gas temperature and velocity during sprinkler activation considering the fire growth scenario based on the thermal response model of the sprinkler. The fire source is assumed to have time square fire growth scenarios with a maximum heat release rate of 3 MW. Eight types of standard and fast-response sprinkler heads with an operating temperature range of 65-105 ℃ and a response time index range of 25-171 m1/2s1/2 were adopted. The temperature difference between the gas stream and the sensing element of the sprinkler head decreased as the fire growth slowed down, and the RTI value decreased. The overall gas temperature and velocity conditions predicted using the FDS model at sprinkler activation were in reasonable agreement with those of standard test conditions of the sprinkler head response. However, the sprinkler head could be activated at lower limits of gas temperature and velocity under the current test conditions for a slowly growing fire scenario.