DOI QR코드

DOI QR Code

Activation Conditions of Sprinkler Head Considering Fire Growth Scenario

화재성장시나리오에 따른 스프링클러 헤드의 작동조건

  • Received : 2020.08.13
  • Accepted : 2020.08.21
  • Published : 2020.08.31

Abstract

The aim of this study is to investigate the gas temperature and velocity during sprinkler activation considering the fire growth scenario based on the thermal response model of the sprinkler. The fire source is assumed to have time square fire growth scenarios with a maximum heat release rate of 3 MW. Eight types of standard and fast-response sprinkler heads with an operating temperature range of 65-105 ℃ and a response time index range of 25-171 m1/2s1/2 were adopted. The temperature difference between the gas stream and the sensing element of the sprinkler head decreased as the fire growth slowed down, and the RTI value decreased. The overall gas temperature and velocity conditions predicted using the FDS model at sprinkler activation were in reasonable agreement with those of standard test conditions of the sprinkler head response. However, the sprinkler head could be activated at lower limits of gas temperature and velocity under the current test conditions for a slowly growing fire scenario.

본 연구에서는 스프링클러 헤드의 해석모델을 통해 화재성장모드별 스프링클러 작동시 연층기류의 열유동조건을 파악하고자 한다. 화원은 최대발열량 3 MW의 시간제곱의 화재성장을 가정하였다. 시험대상 스프링클러헤드는 작동온도 65~105 ℃, RTI 25~171 m1/2s1/2 범위의 표준형과 조기반응형 8종을 대상으로 한다. 연층기류의 온도와 감열부의 온도차는 화재성장이 느리고 스프링클러 헤드의 RTI값이 작을수록 감소하는 경향을 보였다. 스프링클러 헤드 작동 순간의 연층 기류 온도와 속도조건은 전체적으로 시험기준의 범위와 비교적 잘 일치하고 있으나 저성장 화재에서는 최저시험기준 이하의 온도와 속도조건에서 작동이 이루어질 수 있음을 파악하였다. 본 연구는 스프링클러 헤드의 작동에 대한 기초연구로서 시험기준의 신뢰성을 향상시키는데 기여할 수 있다.

Keywords

References

  1. G. Heskestad and H. F. Smith, "Plunge Test for Determination of Sprinkler Sensitivity", Report FMR J 71 3A1E 2RR, Factory Mutual Research Corporation, Norwood, MA (1980).
  2. C. R. Theobald, "Thermal Response of Sprinklers. Part 1. FRS Heated Wind Tunnel", Fire Safety Journal, Vol. 12, No. 1, pp. 51-63 (1987) https://doi.org/10.1016/0379-7112(87)90015-4
  3. C. R. Theobald, S. A. Westley and S. Whitbread, "Thermal Response of Sprinklers. Part II. Characteristics and Test Methods", Fire Safety Journal, Vol. 13, No. 2, pp. 99-114 (1987). https://doi.org/10.1016/0379-7112(88)90006-9
  4. W. J. You, H. J. Moon, M. C. Youm and H. S. Ryou, "An Investigation on the Thermal Characteristics of Heat-Responsive Element of Sprinkler Head", Fire Science and Engineering, Vol. 26, No. 3, pp. 79-84 (2012). https://doi.org/10.7731/KIFSE.2012.26.3.079
  5. ISO 6182-1, "Fire Protection - Automatic Sprinkler Systems - Part 1: Requirements and Test Methods for Sprinklers", International Standard Organization (2014).
  6. J. S. Pepi, "Design Characteristics of Fast Response Sprinklers", Grinnell Fire Protection System Co., Providence, RI (1986).
  7. G. Heskestad and R. G. Bill, "Conduction Heat-Loss Effects on Thermal Response of Automatic Sprinklers", FMRC J. I. OMOJ5.RU, Factory Mutual Research Corp., Norwood, MA. (1987).
  8. W. K. Chow and P. L. Ho, "Thermal Response of Sprinkler Heads in Hot Air Stream with Speed Less Than 1 m/s", Fire Science and Technology, Vol. 12, No. 1, pp. 7-22 (1992).
  9. Y. S. Choi and J. C. Yoon, "An Experimental Study on Characteristics of Sprinkler Head Activation in Low Growth Rate Fire", Fire Science and Engineering, Vol. 30, No. 5, pp. 26-35 (2016). https://doi.org/10.7731/KIFSE.2016.30.5.026
  10. K. McGrattan, S. Hostikka, R. McDermott, J. Floyd and M. Vanella, "Fire Dynamics Simulator Technical Reference Guide, Volume 1: Methematical Model", NIST Special Publication 1018-1, 6th Ed. (2019).
  11. J. G. Quintiere, "Principles of Fire Behavior", 2nd Ed., CRC Press (2016).
  12. G. Heskestad and M. A. Delichatsios, "The Initial Convective Flow in Fire", International Symposium on Combustion, Vol. 17, No. 2, pp. 1113-1123 (1979).