• Title/Summary/Keyword: Fire Properties

Search Result 1,173, Processing Time 0.032 seconds

APPLICATIONS OF A MODEL TO COMPARE AFLAME SPREAD AND BEAT RELEASE PROPERTIES OF INFERIOR FINISH MATERIALS IN A COMPARTMENT

  • Kim, Woon-Hyung;James G. Quintiere
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.193-200
    • /
    • 1997
  • Flame spread and heat release properties and incident heat flux of interior materials subject to an igniter heat flux in a compartment are investigated and compared by using computer model. A comer fire ignition source is maintained for 10 minutes at 100 kw and subsequently increased to 300kw. In executing the model, base-line material properties are selected and one is changed for each run. Also 4 different igniter heat flux conditions and examined. Results are compared for the 12 different materials tested by the ISO Room Comer Test (9705). The time for total energy release rate to reach 1MW is examined. The parameters considered include flame heat flux and thermal inertia, lateral flame spread parameter, heat of combustion and effective heat of gasfication. The model can show the importance of each property in causing fire growth on interior Hnish materials in a compartment. The effect of ignitor heat flux and material property effects were demonstrated by using dimensionless parameters a, b and Tb. Results show that for b greater than about zero, flashover time in the ISO Room-Corner test is principally proportional to ignition time and nothing more.

  • PDF

An Experimental Study on the Engineering Properties of Deteriorated Concrete using Recycled Fine Aggregate by Fire Damage (재생잔골재를 활용한 화재피해를 입은 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kwon, Yung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.190-196
    • /
    • 2006
  • In the existed study, a fire outbreak in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the Properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. Therefore, This study is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with making variable concrete test specimen, exposing high temperature environment, observing the explosive spalling and examining engineering property.

Experimental Study on the Fire Performance of PC Slab by the Bearing Length (걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구)

  • Park, Siyoung;Kang, Thomas H.K.;Lee, Ho-Wook;Gwak, Si-Young;Park, Jun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.14-22
    • /
    • 2022
  • In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

Measurement and Prediction of Combustion Properties of n-Phenol (페놀의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • The fire and explosion properties necessary for waste, safe storage, transport, process design and operation of handling flammable substances are lower explosion limits(LEL), upper explosion limits(UEL), flash point, AIT( minimum autoignition temperature or spontaneous ignition temperature), fire point etc., An accurate knowledge of the combustion properties is important in developing appropriate prevention and control measures fire and explosion protection in chemical plants. In order to know the accuracy of data in MSDSs(material safety data sheets), the flash point of phenol was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of phenol was measured by ASTM 659E apparatus. The explosion limits of phenol was investigated in the reference data. The flash point of phenol by using Setaflash and Pensky-Martens closed-cup testers were experimented at $75^{\circ}C$ and $81^{\circ}C$, respectively. The flash points of phenol by Tag and Cleveland open cup testers were experimented at $82^{\circ}C$ and $89^{\circ}C$, respectively. The AIT of phenol was experimented at $589^{\circ}C$. The LEL and UEL calculated by using Setaflash lower and upper flash point value were calculated as 1.36vol% and 8.67vol%, respectively. By using the relationship between the spontaneous ignition temperature and the ignition delay time proposed, it is possible to predict the ignition delay time at different temperatures in the handling process of phenol.

Measurement of the Device Properties of Photoelectric Smoke Detector for the Fire Modeling (화재모델링을 위한 광전식 연기감지기의 장치물성 측정)

  • Cho, Jae-Ho;Mun, Sun-Yeo;Hwang, Cheol-Hong;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.62-68
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially required for the reliable design of evacuation safety using the fire modeling. The main objective of the present study is to measure input information in order to predict the accurate activation time of photoelectric smoke detector adopted in fire dynamics simulator (FDS) recognized a representative fire model. To end this, the fire detector evaluator (FDE) which could be measured the device properties of detector was used, and the input information of Heskestad and Cleary's models was obtained for a spot-type photoelectric smoke detector. In addition, the activation times of smoke detector predicted using default values into FDS and measured values in the present study were quantitatively compared. As a result, the Heskestad model could result in an inaccurate the activation time of photoelectric smoke detector compared to the Cleary model. In addition, there was a distinct difference between the default values used into FDS and the measured values in terms of device properties of smoke detector, and thus the activation time also showed a significant difference.

Dynamics of the Plant Community Structure and Soil Properties in the Burned and Unburned Areas of the Mt. Ch’olye-san (초례산의 산화지와 비산화지의 식물군집구조 및 토양성분의 동태)

  • Sim, Hak-Bo;Woen Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.417-430
    • /
    • 1996
  • This study was conducted to investigate the developmental process of plant community during the secondary succession and the dynamics of soil properties in the burned and unburned areas of Mt. Ch’oly-san. Owing to the forest fire occurred on April, 1989, the red pine(Pinus densiflora) forest and its floor vegetation were burned down. The floristic composition of burned and unburned areas were composed of 53 and 49 species of vascular plants, respectively. The dominant species based on SDR4 of the burned sites were lespedeza cyrtobotrya (89.62), Miscanthus sinensis var. purpurascens (62.50), and Carex humilis (58.73), Quercus serrata (43.33). In contrast, Pinus densiflora (83.56), Lespedeza cyrtobotrya (55.57), Miscanthus sinensis var. purpurascens (51.88) and Carex humilis (50.41) were dominant in the unburned area. The biological spectra showed the $H-D_1-R_5-e$ type in both the burned and unburned areas. The indices of similarity ($CC_S$) between the two areas were 0.74. Degree of succession (DS) was 604 in the burned area and 802 in the unburned area. From these facts, it is assumed that the succession is rapidly progressing because of the recovery of vegetation. The species diversity ($\={H}$) and evenness index(C) in the burned and unburned areas were 0.15 and 0.18, respectively. Red pine tree did not resprout after scorch by the forest fire, but Lespedeza, Quercus, Rhododendron, Albizzia, and Zanthoxylum resprouted from the roots and trunks after the forest fire. It seems that these species are the fire-resistant species. Soil properties such as soil pH, content of organic matter, available phosphous, total nitrogen, tatal carbon, exchangeable potssium, sodium, calcium, and magnesium increased due to forest fire. These results suggest the intensity of forest fire in the study area was relatively weak. Monthly changes of soil properties were of little significance except for some cases.

  • PDF

A Study on Seismic Design Method Considering Physical Properties of Piping Material (배관 재료의 물성을 고려한 내진설계 방법에 관한 연구)

  • Bang, Dae-Suk;Lee, Jae-Ou
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.38-47
    • /
    • 2018
  • In this study, we compare the engineering seismic design method considering the physical properties of piping materials and the specification-oriented design method according to the seismic design standards of fire fighting equipment. In the case of the seismic design method considering the physical properties of piping materials, the safety of the piping will be analyzed through the combined value of the torsional stress and the bending stress generated in the piping. However, in the case of the design-centered design method, instead of the safety of the piping material, it calculates the moving force of the pipe and interprets whether or not the shaking prevention strut can bear. Fire extinguishing equipment piping is possible through safety analysis of stress and displacement of piping material because piping safety can not be secured via unstable force generated in a certain section with one connected structure is there. Therefore, it is necessary to apply analytical method considering seismic performance of building structure and material properties of piping for seismic design of safe fire extinguishing system piping.

High Temperature Properties of Alumino Silicate Fire Protection Materials Using Fly ash (플라이애쉬 활용 Alumino silicate계 내화마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Park, Nam-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.689-692
    • /
    • 2008
  • HSC(High Strength Concrete) have superior properties well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling of concrete is serious problem in structure safety. Therefore, Solving methods are required to control the explosive spalling. The properties of concrete are affected by changes of temperatures. Compressive strength and elasticity modulus were degraded depending on a rise of temperatures. Also, change in microstructure and dehydration of concrete subjected to high temperatures. This paper is concerned with change in microstructure and dehydration of the alumino silicate fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM, TG-DSC and XRD. From the experimental test results, influence of high temperatures on microstructure of alumino-silicate fire protection material was identified, including chemical dehydration of C-S-H and CH. The chemical dehydration of CH under various temperatures from to 450 to 600$^{\circ}$C has been measured using the TG-DSC. However, developed alumino silicate fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF