• Title/Summary/Keyword: Fire Control

Search Result 1,375, Processing Time 0.028 seconds

A Numerical Simulation of Smoke Control in Daegu Subway Stations I. Smoke Control System (대구 지하철역 제연의 문제점과 대책 I. 제연방식)

    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.98-104
    • /
    • 2003
  • Smoke control in il space 10 m${\times}$3 m floor and 5.4 m high around the stairway of a subway station platform was simulated by using FDS to investigate problems of smoke control in Daegue subway stations. Distributions of temperature and smoke particles, and variation of the number of particles with time for a 200 ㎾ polyurethane fire were compared. It was shown that the purge system fails to remove smoke efficiently and that the extraction system has the highest perfor-mance among the three smoke control systems for the given situations. Simply switching the purge system into extraction mode might improve much the smoke removal performance.

Numerical Study on the Effect of Damper Position on Characteristics of Thermal Flow at the Vestibules and Fire Door (댐퍼의 위치가 부속실 및 방화문에서의 열 유동 특성에 미치는 영향에 관한 수치해석 연구)

  • Moon, Hyo-Jun;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The pressurized smoke control system is important for fire safety in building because it is directly concerned with egress time of people. Even though the damper plays an essential role in the pressurized smoke control system, the phenomena of backflow smoke occurs for a certain the damper position. The research for a position of damper effects on distribution of air flow at the fire door is not performed. In this study, numerical simulation using FDS 5.5 was carried out to analyze the effect of the position of damper on flow distribution at the fire door. To simulate real situation, effects of opening and closing of fire door was considered. As a result, when HRR was between 200 kW and 400 kW, in the case which the damper was on the opposite wall of the fire door, the back flow to the vestibules was large compared to the two other cases of damper position. But when HRR was above 400 kW, Effect on damper position was not occurred.

대규모건축물적용 특수방재설비

  • 이성모
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.37-42
    • /
    • 1996
  • The "Intelligent Fire detecting and Extinguishing System" is an up-to-date fire protection system for modern high-rise buildings, international airports, enormous industrial facilities, dome stadiums such as specific areas in which the application of our local fire protection regulation could not be satisfied. The state-of-the art initiating devices communicated with sophisticated network control panels enable peoples to get reliable and powerful suppressions using water or gas, providing absolute protection. The Intelligent Water Cannon System, the Low Pressure $CO_2$ System and the MXL Networking Fire Alarm System introduced in this paper accomplish the dynamic protection for the special hazards.

  • PDF

Numerical Analysis Methods for Heat Flow in Fire Compartment (화재실의 열유동 해석을 위한 수치 해석 방법)

  • Kim, Gwang-Seon;Son, Bong-Se
    • Fire Protection Technology
    • /
    • s.16
    • /
    • pp.20-23
    • /
    • 1994
  • This article investigates the different numerical methods, which are widely used for purpose of simulating a fire compartment the particular numerical methods such as finite difference, finite element, control Volume, and finite analysis are discribed in order to understand basic concepts and their applications. The fire simulations using fferent methods for the different physical geometrics have been reported in many recent literatures The convergence rate, the accuracy, and the stability are no simply dependent upon the specific method, The study of popular nu-merical methods by being compared among those is therefore significant to understand the nu-merical simulation of fire compartment.

  • PDF

Engineering Control of Mill Fire for High Volatile Sub-bituminous Coal (저급탄 미분기 화재발생 인자분석 연구)

  • Keel, Sang-In;Park, Ho-Young;Kim, Young-Joo;Youn, Sung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • Lots of Coal power plants (about 30) using bituminous coals are being run in Korea. The use of high volatile low grade sub-bituminous coal is increasingly extended because of imbalance between the worldwide coal supply and demand. Mill-fire has been an important issue since the use of such sub-bituminous coal. In existing coal plants of Korea, shutdown of coal and air supplies could be only a way, and an alternative has not been found in suppressing the mill fire. The inside fowfield in the mills has a highly fuel-rich, low temperature, and high velocity and non-reactive such that it could be a nonreactive system essentially. Nevertheless, occasional fire-occurrence could be attributed to the existence of an ignition source. However it has not been so far investigated in detail. The current work has a focus on suppressing the mile fire via some parametric experimental study such as effects of temperature, residence time, ignition source, and inert gas mixing. The results show that an small amount of $CO_2$- or $N_2$-mixing with air is very effective in suppressing fire formation even at high temperatures or flying sparks. The results suggest that exhaust gas recirculation into the mill should be an alternative to suppress mill fire.

Characteristics of Performance and Back-Fire for External Mixture Hydrogen Fueled Engine without Valve Overlap Period (밸브 오버랩 기간이 없는 흡기관 분사식 수소기관의 성능 및 역화특성)

  • Lee, K.J.;Kang, J.K.;Cong, Huynh Thanh;Noh, K.C.;Lee, J.T.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.374-381
    • /
    • 2007
  • In order to verify the feasibility of expansion of back-fire limit equivalence ratio in the hydrogen-fueled engine with external mixture, the characteristics of performance and combustion are experimentally analyzed with change of intake/exhaust valve timings under the fixed valve overlap period of $0^{\circ}$ CA(non-valve overlap period). These characteristics are also tested for the change of exhaust valve closing timing while intake valve opening timing is fixed to clear the main cause of back-fire occurrence. As the results, the less valve overlap period center is retarded, the more back-fire limit equivalence ratio increases and back-fire does not occurred after TDC. In addition, it was shown that the control of back-fire is dependent on intake valve opening timing than valve overlap period.

A Review of Fire Needling on Frozen Shoulder: Focusing on Chinese Journals (동결견의 화침치료에 대한 임상논문 고찰: 중국논문을 중심으로)

  • Lee, Ji Su;Ryu, Chun Gil;Jeong, Seong Sik;Moon, Sung Il
    • Journal of Acupuncture Research
    • /
    • v.30 no.3
    • /
    • pp.87-99
    • /
    • 2013
  • Objectives : The objective of this study is to find out the method and effects of fire needling on frozen shoulder in China. Methods : We searched journals using the China National Knowledge Infrastructure(CNKI) and PubMed. The keywords were a combination of "fire needling", "fire needle", "burning acupuncture", "frozen shoulder", "adhesive capsulitis", "periarthritis". Results : There were 23 studies finally selected, 7 were case control studies and 16 were case series studies. There were 9 out of 14 main meridians and 31 kinds of acupoints. The most frequently adopted meridians were LI, SI and TE. The most frequently used acupoints were $LI_{15}$, $SI_9$ and $TE_{14}$. Adjacent points were used more often than distant points. They usually heated the needle before insertion and needle retention was mostly not done. 7 case control studies showed that fire needling reported better results than the filiform needle or electro-acupuncture treatment. 15 case series studies reported a significant improvement in fire needling on frozen shoulder patients. Conclusions : There have been many studies regarding fire needling on frozen shoulder in China. Further studies should be required and these can be applied to clinical practices in Korea.

Biological Control Potential of Penicillium brasilianum against Fire Blight Disease

  • Kim, Yeong Seok;Ngo, Men Thi;Kim, Bomin;Han, Jae Woo;Song, Jaekyeong;Park, Myung Soo;Choi, Gyung Ja;Kim, Hun
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.461-471
    • /
    • 2022
  • Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the 𝛽-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 ㎍/ml. When culture filtrate and penicillic acid (125 ㎍/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.

An Experimental Study of Fire Suppression Using a Water Mist in a Compartment (물분무를 이용한 화재제어에 관한 실험적 연구)

  • Kim, Sung-Chan;Park, Hyun-Tae;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.367-373
    • /
    • 2003
  • The present study investigates the fire suppression characteristics using a water mist fire suppression system. The fire extinguishing times are measured for various fire sources, fuel types, and different total flooding rates of water mist. Pool fire with hydrocabon fuel is successfully extinguished within a minute under the operating conditions of the water mist system. Two different regimes of the smoke layer cooling are observed, such as rapid and slow cooling processes. The regimes are divided by threshold time which is calculated with auto-correlation function. The threshold time for the initial cooling decreases with increasing water flow-rates and fire sources. These initial cooling effects play an important role in preventing the occurance of flashover fire by the initial fire suppression.