• Title/Summary/Keyword: Finite time settling control

Search Result 10, Processing Time 0.022 seconds

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

Optimal Control of a First Order System (일차계통의 최적제어에 관한 연구)

  • 송문현;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 1994
  • In this paper, an optimal control of first order systems is discussed. The control system comprises a main controller and an auxiliary controller. The main controller is designed based on the LQ control scheme including an integrator to remove the off-set. The non-linear auxiliary controller is added parallely to the main controller to obtain a finite time settling control. The control parameters under variation of the system and various coefficients of the performance indices are computed numerically, and the control responses for the system with the proposed controllers demonstrated the usefulness of the control method.

  • PDF

Optimal Design of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 최적설계)

  • 김성열;이금원
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.97-100
    • /
    • 2000
  • Deadbeat property is well established in digital control system design in time domain. But in continuous time system, deadbeat is impossible because of it's ripples between sampling points. But several researchers suggested delay elements. From some specifications such as Internal model stability, physical realizations and finite time settling, unknown polynomials with delay elements in error transfer functions can be calculated. For the application to the real system, robustness property can be added. In this paper, error transfer function is specified with 1 delay element and unkown coefficients are calculated from the specs. Especially, by varying settling time and the user-specified poles, a deadbeat controller with lower order is obtained.

  • PDF

A Study on The Adaptive Control of the Rotational Systems by Means of the Normal Model Tracking Method (규범모델 추종방식에 의한 회전계통의 적응속도제어에 관한 연구)

  • 하주식;송문현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.77-83
    • /
    • 1995
  • Recently, in the field of industrial servo-systems, several methods have been proposed for tracking the reference input fastly and finely without overshoot. These methods, however, are established under hypothesis that structure and parameters of the plant are known accurately and they are time invariant. In practice, it is difficult to obtain the values of plant's parameters accurately and usually plants change with time and operation conditions. In this paper a method to construct the nominal model tracking adaptive control system is proposed. The system is composed of the nomial model which produces a ideal response and the model tracking system with the fuzzy adaptive controller. If the actual plant is equal to the controlled object in the nominal model, the output of the plant is the same as that of the nominal model and the fuzzy adaptive controller becomes idle. However, when the plant changes, the fuzzy adaptive controller of the tracking system operates in order for the output of the plant to track the ideal response. Through the computer simulations under various conditions, it is confirmed that the proposed model tracking system is very effective.

  • PDF

Optimal Design of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 최적설계)

  • Kim Seung Youal;Lee Keum Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.169-176
    • /
    • 2000
  • Deadbeat property is well established in digital control system design in time domain. But in continuous time system, deadbeat is impossible because of it's ripples between sampling points inspite of designs using the related digital control system design theory. But several researchers suggested delay elements. A delay element is made from the concept of finite Laplace Transform. From some specifications such as internal model stability, physical realizations as well as finite time settling, unknown coefficents and poles in error transfer functions with delay elements can be calulted so as to satisfy these specifications. For the application to the real system, robustness property can be added. In this paper, error transfer function is specified with 1 delay element and robustness condition is considered additionally. As the criterion of the robustness, a weighted sensitive function's $H_{infty}$ norm is used. For the minimum value of the criterion, error transfer function's poles are calculated optimally. In this sense, optimal design of the continuous time deadbeat controller is obtained.

  • PDF

Integrated Structure and Controller Design of Single-Link Flexible Arm for Improving the Performance of Position Control (유연 외팔보의 위치제어 성능향상을 위한 형상 및 제어기 통합설계)

  • Lee, Min-U;Park, Jang-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.120-129
    • /
    • 2002
  • An integrated structure and controller design approach for rotating cantilever beam is presented. An optimization method is developed for improving positioning performance considering the elastic deformations during high speed rotation and adopting the beam shape and the control gains as design variables. For this end, a dynamic model is setup by the finite element method according to the shape of the beam. The mass and stiffness of the beam are distributed in such a way that the closed-loop poles of the control system should be located leftmost in the complex s-plane. For optimization method, the simulated annealing method is employed which has higher probability to find the global minimum than the gradient-based down-hill methods. Sequential design and simultaneous design methods are proposed to obtain the optimal shape and controller. Simulations are performed with new designs by the two methods to verify the effectiveness of the approach and the results show that the settling time is improved for point-to-point position controls.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Design of a CDBC Using Multirate Sampling (Multirate 샘플링을 이용한 CDBC의 설계)

  • 김진용;김성열;이금원
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.47-51
    • /
    • 2003
  • Due to the asymptotic property, deadbeat control which is well used in digital control system can not be applied to the continuous time system. But recently by use of the finite Laplace Transform to transfer function and establishment of some settling conditions, CDBC(Continuous time Deadbeat Control) is studied. For CDBC design, transfer function is constituted with delay elements and then order and interpolation conditions are derived. In other way, digital deadbeat controller is implemented and it's output is changed to continuous type by smoothing elements. In this paper multirate sampling is used and so inner controller is sampled faster than output feedback loop. And End order smoothing elements is placed to the output of digital deadbeat controller. By the multirate sampling overall output response is improved. The controller is impleneted as a serial integral compensator in the forward path and a local feedback compensator introduced into the outpute feedback loop. Matlab Simulink is used for simulation.

  • PDF

Vibration Control of a Beam with a Tip Mass using a Lightweight Piezo-composite Actuator (경량 압전 복합재료 작동기를 이용한 끝단 질량이 부착된 보의 진동 제어)

  • Martua, Landong;Park, Hoon-Cheol;Goo, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.218-224
    • /
    • 2007
  • Although piezoelectric materials such as PZT have been widely used as actuators in the field of active vibration suppression, the use of bare PZT as an actuator may cause some drawbacks such as critical breaks in the installation process, short circuits in the host material and low fatigue performance. The LIPCA-C2 (lightweight piezocomposite actuator) was developed to alleviate these problems. We implemented the LIPCA as an actuator to suppress the vibration of an aluminum cantilever beam with a tip mass. In our test, we used positive position feedback control algorithm. The filter frequency for this type of feedback should be tuned to the natural frequency of the target mode. The first three experimental natural frequencies of the aluminum cantilever beam agree well with the results of finite element analysis. The effectiveness of using the LIPCA as an actuator in active vibration suppression was investigated with respect to the time and frequency domains, and the experimental results show that LIPCAs with PPF control can significantly reduce the amplitude of forced vibrations and the settling time of free vibrations. For a case study, the forced vibration control of several beams with different thicknesses were performed.