• Title/Summary/Keyword: Finite substrate

Search Result 247, Processing Time 0.022 seconds

A Study on Attractive Force Characteristics of Glass Substrate Using Alumina Electrostatic Chuck by Finite Element Analysis (유한요소해석을 이용한 알루미나 정전척의 글라스 기판 흡착 특성 연구)

  • Lee, Jae Young;Jang, Kyung Min;Min, Dong Kyun;Kang, Jae Gyu;Sung, Gi Hyun;Kim, Hye Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.46-50
    • /
    • 2020
  • In this research, the attractive force of Coulomb type electrostatic chuck(ESC), which consisted of alumina dielectric, on glass substrate was studied by using the finite element analysis. The attractive force is caused by the high electrical resistance which occurs in contact region between glass substrate and dielectric layer. This research tries the simple geometrical modeling of ESC and glass substrate with air gap. The influences of the applied voltage, and air gap are investigated. When alumina dielectric with 1014 Ω·cm, 1.5 kV voltage, and 0.01 mm air gap were applied, electrostatic force in this work reached to 4 gf/㎠. This results show that the modeling of air gap is essential to derive the attractive force of the ESC.

Effect of a Finite Substrate Size on the Radiation Characteristics of Two-Element Linear E-plane Array Antennas (유한한 기판 크기가 2소자 E-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.95-110
    • /
    • 2012
  • The effect of a finite substrate size on the radiation characteristics of a two-element linear E-plane array antenna using microstrip patch antennas is investigated. The average active element pattern characteristics of two-element E-plane array antennas printed on different dielectric constant substrates with various substrate sizes and element spacings are analyzed. Using the average active element pattern, the radiation pattern characteristics of the array antenna versus scan angle is analyzed. The simulation results show that the diffracted fields of surface waves from substrate edges have a significant effect on the radiation characteristics of a 2-element E-plane array antenna. The distance between the center of patch antenna and the substrate edges on the E-plane for the enhancement of radiation characteristics of the array antenna is about $0.35{\lambda}_0$.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Development of a Finite Element Program for Determining Mat Pressure in the Canning Process for a Catalytic Converter (촉매변환기를 캐닝할 때 발생하는 매트의 압력분포 유한요소해석 프로그램의 개발)

  • Chu, Seok-Jae;Lee, Young-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1471-1476
    • /
    • 2011
  • The catalytic converter in the front part of an automobile's exhaust system converts toxic exhaust gas into nontoxic gas. The substrate in the central part of the converter has a circular or oval-shaped cross section and fine lattice-shaped walls. In the canning process, the substrate is wrapped in mats and inserted into a can. During this process, mat pressure is induced, which may cause brittle fracturing in the substrate. In this paper, a finite element program for determining the mat pressure distribution was developed to avoid these fractures. The program was created in Microsoft EXCEL, so the input and output procedures are relatively simple. It was assumed that the substrate is rigid, the mat is material nonlinear, and the can is linear elastic. The can is modeled as a beam element to resist both bending and uniform tension/compression. The number of elements is fixed to 35, and the number of iterations, to 20. The solutions are compared to ABAQUS solutions and found to be in good agreement.

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.

Elastic-Plastic Finite Element Analysis of TiN Thin Film (TiN 박막의 탄소성 유한요소해석)

  • 김정실;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.331-340
    • /
    • 2001
  • Elastic-Plasitc Finite element analysis is peformed about the TiN coated medium. The normal contact is simulated by a rigid asperity pressing the surface of an elastic-plastic half-surface. The case of a surface film stiffer than the substrate is considered, and general solutions for the subsurface stress and deformation fields are presented for several coating thickness. Additionally, the critical normal loads for deformation in the substrate and coating fracture are calculated when the yield of TiN film follows the Maximum Principal Stress Theory and Von Mises Theory. The results can be subsumed in failure maps for TiN thin film on steel.

  • PDF

Estimation of the Substrate Size with Minimum Mutual Coupling of a Linear Microstrip Patch Antenna Array Positioned Along the H-Plane

  • Kwak, Eun-Hyuk;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.320-324
    • /
    • 2015
  • Mutual coupling between antenna elements of a linear microstrip patch antenna array positioned along the H-plane including the effect of edge reflections is investigated. Simple formulas are presented for the estimation of the grounded dielectric substrate size with minimum mutual coupling. The substrate sizes calculated by these formulas are in good agreement with those obtained by the full-wave simulation and experimental measurement. The substrate size with minimum mutual coupling is a function of the effective dielectric constant for surface waves and the distance between the antenna centers. The substrate size with minimum mutual coupling decreases as the effective dielectric constant for surface waves on a finite grounded dielectric substrate increases.

Structural Analysis of a PCB Substrate System for Semiconductor (반도체용 PCB 기판시스템의 구조해석)

  • Rim, Kyung-Hwa;Yang, Xun;Yoon, Jong-Kuk;Kim, Young-Kyun;Iyu, Sun-Joong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.113-118
    • /
    • 2011
  • According to the high accuracy of semiconductor equipments, PCB substrate with much thin thickness is required. However, it is very difficult to sustain the PCB substrate without deformation in case of horizontal installation, due to low bending stiffness. In this research, new PCB process equipment with vertical installation has been developed in order to solve the problem of PCB substrate damage during etching process. As the main parts of etching system on PCB substrate, PCB substrate and JIG are analyzed through finite element method and experimental test. Through the analysis results of stress state, we could find the optimal JIG design to make the damage as low as possible.

Wrinkling of a homogeneous thin solid film deposited on a functionally graded substrate

  • Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.215-225
    • /
    • 2020
  • Thin films easily wrinkle under compressive loading due to their small bending stiffness resulting from their tiny thickness. For a thin film deposited on a functionally graded substrate with non-uniform stiffness exponentially changes along the length span in this paper, the uniaxial wrinkling problem is solved analytically in terms of hyper-Bessel functions. For infinite, semi-infinite and finite length systems the wrinkling load and wrinkling wavenumber are determined and compared with those in literature. In comparison with a homogeneous substrate-bounded film in which the wrinkling pattern is uniform along the length span, for a functionally graded substrate-film system the wrinkles accumulate around the softer location of the functionally graded substrate. Therefore, the effective length of the film influenced by the wrinkles decreases, the amplitude of the wrinkles on softer regions of the functionally graded substrate grows and the wrinkling load of the functionally graded substrates with higher softening rate decreases more. The results of the current research are expected to be useful in science and technology of thin films and wrinkling of the structures especially living tissues.

Study on Design Parameters of Substrate for PoP to Reduce Warpage Using Finite Element Method (PoP용 Substrate의 Warpage 감소를 위해 유한요소법을 이용한 설계 파라메타 연구)

  • Cho, Seunghyun;Lee, Sangsoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.61-67
    • /
    • 2020
  • In this paper, we calculated the warpage of bare substrates and chip attached substrates by using FEM (Finite Element Method), and compared and analyzed the effect of the chips' attachment on warpage. Also, the effects of layer thickness of substrates for reducing warpage were analyzed and the conditions of layer thickness were analyzed by signal-to-noise ratio of Taguchi method. According to the analysis results, the direction of warpage pattern in substrates can change when chips are attached. Also, the warpage decreases as the difference in the CTE (coefficient of thermal expansion) between the top and bottom of the package decreases and the stiffness of the package increases after chips are loaded. In addition, according to the impact analysis of design parameters on substrates where chips are not attached, in order to reduce warpage, the inner layers of the circuit layer Cu1 and Cu4 has be controlled first, and then concentrated on the thickness of the solder resist on the bottom side and the thickness of the prepreg layer between Cu1 and Cu2.