• Title/Summary/Keyword: Finite rotation groups

Search Result 11, Processing Time 0.024 seconds

Generalized One-Level Rotation Designs with Finite Rotation Groups Part I:Generatio of Designs

  • Park, You-Sung;Kim, Kee-Whan
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.29-44
    • /
    • 2000
  • In this paper, we consider one-level rotation designs with finite rotation groups such that the design satisfies two basic requirements: all rotation groups are included in any given survey period, and overlapping rates depend only on the time lag. First we present the necessary number of rotation groups and a rule for the length of time the sample units are to be in or out of the sample to satisfy the requirements. Second, an algorithm is presented to put rotation groups to proper positions in a panel in order to include all finite rotation groups for any survey period. Third, we define an one-level rotation pattern which is invariant in the survey period and has useful properties in practical sense.

  • PDF

Generalized One-Level Rotation Designs with Finite Rotation Groups Part II : Variance Formulas of Estimators

  • Kim, Kee-Whan;Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.45-62
    • /
    • 2000
  • Rotation design is a sampling technique to reduce response burden and to estimate the population characteristics varying in time. Park and Kim(1999) discussed a generation of one-level rotation design which is called as {{{{r_1^m ~-r_2^m-1}}}} design has more applicable form than existing before. In the structure of {{{{r_1^m ~-r_2^m-1}}}} design, we derive the exact variances of generalized composite estimators for level, change and aggregate level characteristics of interest, and optimal coefficients minimizing their variances. Finally numerical examples are shown by the efficiency of alternative designs relative to widely used 4-8-4 rotation design. This is continuous work of Part Ⅰ studied by Park and Kim(1999).

  • PDF

Generalized Composite Estimators and Mean Squared Errors for l/G Rotation Design (l/G 교체표본디자인에서의 일반화복합추정량과 평균제곱오차에 관한 연구)

  • 김기환;박유성;남궁재은
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • Rotation sampling designs may be classified into two categories. The first type uses the same sample unit for the entire life of the survey. The second type uses the sample unit only for a fixed number of times. In both type of designs, the entire sample is partitioned into a finite number(=G) of rotation groups. This paper is generalization of the first type designs. Since the generalized design can be identified by only G rotation groups and recall level 1, we denote this rotation system as l/G rotation design. Under l/G rotation design, variance and mean squared error (MSE) of generalized composite estimator are derived, incorporating two type of biases and exponentially decaying correlation pattern. Compromising MSE's of some selected l/G designs, we investigate design efficiency, design gap effect, ans the effects of correlation and bias.

Experimental study of a modeled building frame supported by pile groups embedded in cohesionless soil

  • Ravi Kumar Reddy, C.;Gunneswara Rao, T.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.321-336
    • /
    • 2011
  • This paper presents the results of static vertical load tests carried out on a model building frame supported by pile groups embedded in cohesionless soil (sand). The effect of soil interaction on displacements and rotation at the column base and also the shears and bending moments in the columns of the building frame were investigated. The experimental results have been compared with those obtained from the finite element analysis and conventional method of analysis. Soil nonlinearity in the lateral direction is characterized by the p-y curves and in the axial direction by nonlinear vertical springs along the length of the piles (${\tau}-z$ curves) at their tips (Q-z curves). The results reveal that the conventional method gives the shear force in the column by about 40-60%, the bending moment at the column top about 20-30% and at the column base about 75-100% more than those from the experimental results. The response of the frame from the experimental results is in good agreement with that obtained by the nonlinear finite element analysis.

FINITENESS OF MAPPING CLASS GROUPS

  • Hong, Sungbok;Yang, Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1297-1302
    • /
    • 2013
  • We prove that the mapping class group of a non-Haken orientable irreducible 3-manifold is finite and we show that the quotient group of the mapping class group by the rotation group is virtually torsion-free if the manifold does not have 2-sphere boundary components.

Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study

  • Sewoong Oh;Youn-Kyung Choi;Sung-Hun Kim;Ching-Chang Ko;Ki Beom Kim;Yong-Il Kim
    • The korean journal of orthodontics
    • /
    • v.53 no.6
    • /
    • pp.420-430
    • /
    • 2023
  • Objective: The purpose of this finite element method (FEM) study was to analyze the biomechanical differences and tooth displacement patterns according to the traction direction, methods, and sites for total distalization of the mandibular dentition using clear aligner treatment (CAT). Methods: A finite element analysis was performed on four FEM models using different traction methods (via a precision cut hook or button) and traction sites (mandibular canine or first premolar). A distalization force of 1.5 N was applied to the traction site by changing the direction from -30 to +30° to the occlusal plane. The initial tooth displacement and von Mises stress on the clear aligners were analyzed. Results: All CAT-based total distalization groups showed an overall trend of clockwise or counterclockwise rotation of the occlusal plane as the force direction varied. Mesiodistal tipping of individual teeth was more prominent than that of bodily movements. The initial displacement pattern of the mandibular teeth was more predominant based on the traction site than on the traction method. The elastic deformation of clear aligners is attributed to unintentional lingual tipping or extrusion of the mandibular anterior teeth. Conclusions: The initial tooth displacement can vary according to different distalization strategies for CAT-based total distalization. Discreet application and biomechanical understanding of traction sites and directions are necessary for appropriate mandibular total distalization.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

A THREE-DIMENSIONAL FEM COMPARISON STUDY ABOUT THE FORCE, DISPLACEMENT AND INITIAL STRESS DISTRIBUTION ON THE MAXILLARY FIRST MOLARS BY THE APPLICATION OF VAR10US ASYMMETRIC HEAD-GEAR (비대칭 헤드기어의 적용시 상악제 1 대구치에 나타나는힘과 변위 및 초기 응력분포에 관한 3차원 유한요소법적 연구)

  • Kim, Jong-Soo;Cha, Dyung-Suk;Ju, Jin-Won;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.25-38
    • /
    • 2001
  • The purpose of this study was to compare the force, the displacement and the stress distribution on the maxillary first molars altered by the application of various asymmetric head-gear. For this study, the finite element models of unilateral Cl II maxillary dental arch was made. Also, the finite element models of asymmetric face-bow was made. Three types of asymmetric face-bow were made : each of the right side 15mm, 25mm and 35mm shorter than the left side. We compared the forces, the displacement and the distribution of stress that were generated by application of various asymmetric head-gear, The results were as follows. 1. The total forces that both maxillary first molars received were similar in all groups. But the forces that mesially positioned tooth received were increased as the length of the outer-bow shortened, and the forces that normally positioned tooth received were decreased as the length of the outer-bow shortened. 2. In lateral force comparison, the buccal forces that normally positioned tooth received were increased as the length of the outer-bow shortened, and the buccal fortes that mesially positioned tooth received were decreased as the length of the outer-bow shortened. Though the net lateral force moved to the buccal side of normally positioned tooth as the length of the outer-bow shortened, both maxillary first molars received the buccal force. That showed 'Avchiai Expansion Effect' 3. The distal forces, the extrusion forces and the magnitudes of the crown distal tipping that mesially positioned tooth received were increased as the length of the outer-bow shortened, and the forces that normally positioned tooth received were decreased as the length of the outer-bow was shortened. 4. The magnitude of the distal-in rotation that normally positioned tooth received were increased as the length of the outer-bow was shortened. But, mesially positioned tooth show two different results. For the outer-bow 15mm shortened, mesially positioned tooth showed the distal-in rotation, hut for the outer-bow 25mm and 35mn shortened, mesially positioned tooth showed the distal-out rotation. Thus, the turning point exists between 15mm and 25mm. 5. This study of the initial stress distribution of the periodontal ligament at slightly inferior of the furcation area revealed that the compressive stress in the distobuccal root of the normally positioned tooth moved from the palatal side to the distal side and the buccal side successively as the length of the outer-bow shortened. 6. This study of the initial stress distribution of the periodontal ligament at slightly inferior of the furcation area revealed that the magnitudes of stress were altered but the total stress distributions were not altered in the mesiobuccal root and the palatal root of normally positioned tooth, and also three roots of mesially positioned tooth as the length of the outer-bow shortened.

  • PDF

A STUDY ON THE EFFECT OF THE CHINCAP BY FINITE ELEMENT ANALYSIS IN JUVENILE SKELETAL CLASS III PATIENTS (유년기 골격성 III급 부정교합자에서 이모장치의 효과에 관한 유한요소분석법적 연구)

  • Choi, Jeong-Ho;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.353-370
    • /
    • 1998
  • This study was conducted to investigate the changes in the structural parts of the craniofacial skeleton subsequent to chincap therapy in the juvenile skeletal Class III patients. The subject consisted of 29 Korean children(14 males, 15 females) who had skeletal Class III malocclusion and were undergone chincap therapy from the beginning of the treatment (and an auxilliary upper removable appliance, if necessary). The control group was composed of 21 children(10 males, 11 females) with skeletal Class III malocclusion who had no orthodontic treatment. Cephalometric data at the mean age of 7 and 2 years later were analyized by finite element method, and compared between groups by independent group t-test(p<0.05). The results of the present study were as follows; 1. There were no significant changes in the cranial base, posterior face, upper anterior face, ramus, chin and soft tissues by the chincap therapy. 2. The mandibular body showed significant differences in the minimum extention ratio and the overall shape ratio. This means that the vertical direction of growth was retarded by the chincap therapy. 3. The major direction of the growth in the maxillary basal bone was significantly more horizontal in the experimental group, which suggests that the vertical growth of maxilla was inhibited. 4. There was statistical difference in the major direction of the growth of the anterior face between groups. This may be due to the significant difference in the major direction of growth of the lower anterior face, supposed to be resulted from the mandibular rotation and/or displacement by the chincap therapy. The change in the oral functional space seemed to be caused by the same reason. 5. From the standpoint of these results, the retardation of growth, the changes of the growth direction and the morphological changes could be accepted partly, but the major effect of the chincap seems to be the rotation and the displacement of the mandible.

  • PDF

Application and Verification of Coupled Analysis of Piled Piers (교량 말뚝기초 해석기법의 적용성 분석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.123-134
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method (YSGroup) was developed considering nonlinear pile head stiffness matrices and compared with other analytical methods (elastic displacement method, Group 6.0 and FBPier 3.0). In this method, a pile cap was modelled by four-node flat shell element, a pier was modelled using 3 dimensional beam element, and individual piles were modelled as beam-column elements. Through the comparative studies on a piled pie. subjected to lateral loads in linear soil, it was found that present method (YSGroup), elastic displacement method and Group 6.0 gave similar results of lateral pile head displacement, but FBPier 3.0 was estimated to show somewhat larger displacements than those from the three methods. Displacements of superstructure (pier), including nonlinear soil behavior, could be estimated by present method (YSGroup) and FBPier 3.0 because these two methods modelled the superstructure directly by finite element techniques. It was found that pile groups in pinned pile head condition had a tendency to cause excessive rotation of the pile cap.