• Title/Summary/Keyword: Finite rate of increase

Search Result 165, Processing Time 0.029 seconds

A Study on the Heat Disspation of Air Compressor Cylinder Head by the Finite Elements Method (유한요소법에 의한 공기압축기 실린더 헤드의 방열에 관한 연구)

  • Lee, Chang-Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-80
    • /
    • 1979
  • This study describes the conduction of heat in the discharge head of air compressor. It also gives a base for a finite elements analysis of two dimenional steady -state heat conduction in the cylinder head of air cooled type reciprocating compressor. Using a single cylinder compressor operated at a given speed, tests were made observing outside temperature, final pressure and discharge temperature of air in cylinder head. As a result, the following were obtained : (1) The rate oi heat flow from the inner surface of discharge head to outside wall reach 46. 328 kcal /h at a speed of 796rpm under the constant temperature of inlet air. (2) The compression work of air increase in accordance with temperature rise of inlet air.

  • PDF

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang;Binhui Jiang;Fa-xing Ding;Zhiwu Yu
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.469-484
    • /
    • 2023
  • The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.

Parametric Study of Selective Laser Melting Using Ti-6Al-4V Powder Bed for Concurrent Control of Volumetric Density and Surface Roughness (LPBF 공정으로 제조된 Ti-6Al-4V 합금의 밀도와 표면 거칠기 제어를 위한 매개변수 연구)

  • Woo, Jeongmin;Kim, Ji-Yoon;Sohn, Yongho;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.410-416
    • /
    • 2021
  • Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.

A Study on the Dynamic Stability of a Flexible Missile with Mass Variation (질량변화를 갖는 유연한 미사일의 동적 안정성에 관한 연구)

  • Ryu, Bong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.107-117
    • /
    • 1991
  • The dynamic stability problem of nonconservative system is one of the important problems. In this study, flexible missile with mass variation is regarded as a free Timoshenko beam subjected to a controlled follower force. The stability was studied numerically through the finite element method. Through the study, the obtained results are as follows: [1] Without force direction control (1) In the case of no mass reduction, the existence of concentrated mass increases critical follower force. (2) Mass reduction rate of the beam slightly effects on the change of critical follower force. [2] With force direction control (1) Shear deformation parameter S contributes insignificantly to the force at instability when $S{\geq}10^4$. (2) With mass variation, increase of concentrated mass increases critical follower force at instbility. (3) The type of promary instability is determined by the sensor location.

  • PDF

Convection Heat Transfer Coefficient of a Meat Cube in a Continuous Flow Sterilizing System

  • Hong, Ji-Hyang;Han, Young-Joe;Chung, Jong-Hoon
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.328-333
    • /
    • 2005
  • Finite difference model and dynamic thermal property evaluation system were developed to estimate convection heat transfer coefficient by modeling temperature-time profile of beef cube in continuous flow sterilizing system. As input parameters of the model, specific heat and thermal conductivity values of beef frankfurter meat were independently measured from 20 to $80^{\circ}C$. Convection heat transfer coefficient was estimated by comparing simulated and measured temperature-time profiles. Actual temperature-time profiles of meat cube were measured at flow rates of 15, 30, and 45 L/min and viscosities from 0 to 15 cp, and mean values of convection heat transfer coefficients ranged from 792 to $2107\;W/m^2{\cdot}K$. Convection heat transfer coefficient increased with increase in flow rate and decreased as viscosity increased.

Micro-macroscopic analysis on the directional casting of a metal alloy (합금의 방향성 주조에 대한 미시적-거시적 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1303-1313
    • /
    • 1997
  • A micro-macroscopic analysis on the conduction-controlled directional casting of Al-Cu alloys is performed, in which emphases are placed on the microstructural features. In order to facilitate the solution procedure, an iterative micro-macroscopic coupling algorithm is developed. The predicted results show that the effect of finite back diffusion on the transient solidification process in comparison with the lever rule depends essentially on the initial concentration of an alloy. In the final casting, the eutectic fraction is distributed in an increasing-decreasing-increasing pattern, each mode of which is named the chill, interior and end zones. This nonuniformity per se suffices to justify the necessity of this work because it originates from the combined effects of finite back diffusion and cooling path-dependent nature of the eutectic formation. As the cooling rate is enhanced, not only the influence depths of boundaries narrow, but also the eutectic fractions in the chill and interior zones increase. In addition, it is revealed for the first time that the micro segregation band is formed in response to a sudden change in cooling rate during the directional casting. An increasing change creates an overshooting band in the eutectic fraction distribution, and vice versa.

3D material model for nonlinear basic creep of concrete

  • Bockhold, Jorg
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.101-117
    • /
    • 2007
  • A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

THROUGHPUT ANALYSIS OF TWO-STAGE MANUFACTURING SYSTEMS WITH MERGE AND BLOCKING

  • Shin, Yang Woo;Moon, Dug Hee
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.77-87
    • /
    • 2015
  • Parallel lines are often used to increase production rate in many manufacturing systems where the main line splits into several lines in parallel, and after some operations, they merge into a main line again. Queueing networks with finite buffers have been widely used for modeling and analyzing manufacturing systems. This paper provides an approximation technique for multi-server two-stage networks with merge configuration and blocking which will be a building block for analysis of general manufacturing systems with parallel lines and merge configuration. The main idea of the method is to decompose the original system into subsystems that have two service stations with multiple servers, two buffers and external arrivals to the second stage are allowed. The subsystems are modeled by level dependent quasi-birth-and-death (LDQBD) process.

A Study on the Reliability Analysis for a Linear Type Pneumatic Actuator with Cross Roller Guide (리니어 타입 크로스 롤러 가이드 공압 액추에이터의 신뢰성 평가에 관한 연구)

  • Shin Bong-Cheol;Cho Myeong-Woo;Kang Sung-Min;Lee Soo-Jin;Choi Jin-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.184-189
    • /
    • 2006
  • This research presents the performance analysis of the linear type pneumatic actuators that are used in semi-conductor assembly line to transfer some product with high accuracy. To increase positioning and repetitive accuracies, a cross roller guide is implemented inside the pneumatic actuator. The finite element method is used to verify the force against working moments, and reliability analysis is performed to classify the breakdown cases. Also, reliability, failure rate, probability density function, and $B_{10}$ to life are estimated under the boundary of thrust or air leakage conditions. In this study, the failure probabilistic function of the pneumatic actuators is analyzed using Weibull distribution.