• Title/Summary/Keyword: Finite plastic deformation

Search Result 684, Processing Time 0.029 seconds

Analysis for Deformation and Fracture Behavior of Magnesium during Equal Channel Angular Pressing by the Finite Element Method (마그네슘의 등통로각압축 공정 시 변형 및 파괴 거동에 대한 유한요소해석)

  • Yoon, Seung Chae;Pham, Quang;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.144-149
    • /
    • 2008
  • Equal channel angular pressing (ECAP) has been studied intensively over the decade as a typical top-down process to produce ultrafine/nano structured materials. ECAP has successfully been applied for a processing method of severe plastic deformation to achieve grain refinement of magnesium and to enhance its low ductility. However, difficult-to-work materials such as magnesium and titanium alloys were susceptible to shear localization during ECAP, leading to surface cracking. The front pressure, developed by Australian researchers, can impose hydrostatic pressure and increase the strain level in the material, preventing the surface defect on workpiece. In the present study, we investigated the deformation and fracture behavior of pure magnesium using experimental and numerical methods. The finite element method with different ductile fracture models was employed to simulate plastic deformation and fracture behavior of the workpiece.

Finite Element Analysis of Deep Drawing for Axisymmetric Sheet Metal Housing (축대칭 박판 하우징의 디프드로잉 성형에 대한 유한요소법해석 및 파단 원인 분석)

  • 윤정호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.191-198
    • /
    • 1994
  • A practical example of the axisymmetric deep drawing process is simulated by the elastic-plastic finite element analysis using updated Lagrangian approach considering the large deformation. An approach is suggested to solve the problem of the ductile fracture that may encounter during the deep drawing process. The result can be applied to the design of the die for the axisymmetric deep drawing.

Process Design in Precision Coining by Three-Dimensional Finite Element Method (정밀 코닝 공정 설계에서의 3차원 유한요소법 활용)

  • 최한호;강범수;변천덕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.173-181
    • /
    • 1994
  • Process design is one of the most important fields in metal forming, where the finite element method has appeared a useful method for industrial applications. In this study, a program using the rigid plastic finite element has been developed for preform design in three-dimensional plastic deformation. The surface integration for calculation of the friction between die and workpiece has been implemented with care in numerical treatment. The developed program is applied to a precision coining process for designing an optimal punch.

  • PDF

The Incipient Deformation Analysis for Plane Strain Open-Die Forging Processes with V-shaped Dies Using the Force Balance Method (힘평형법을 이용한 V-형다이 평면변형 자유형 단조공정의 초기변형 해석)

  • Lee, J.H.;Kim, B.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 1993
  • Force balance method is employed to predict forging information such as forging load, tool pressure and normal stress at the surface of tangential velocity discontinuity. The incipient stages of deformation for the plane strain forging of rectangular billets in V-shaped dies of different semi-angles are analysed. To construct an approximate model for the analysis of deformation by the force balance method in the incipient deformation stages, slip-line field is used. When the deformation mode by slip-line method is the same as that by force balance method, the slip-line method and the force balance method give identical solutions. The effects of die angle, coefficient of friction, billet geometries and deforma- tion characteristics are also investigated. In order to verify the validity of force balance analysis, the rigid-plastic finite element simulation for the various forgig parameters are performed and performed and find to be in good agreement.

  • PDF

Prediction of Deformation Texture for FCC Metals Using the Finite Element Method (유한요소법을 이용한 면심입방정금속의 변형 집합조직 예측)

  • 권재욱;정효태;오규환;이동녕
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.229-242
    • /
    • 1994
  • An approximate procedure based on a combination micro-macroscopic theories of plasticity for predicting the crystallographic texture during the plane strain forming of fcc metals has been developed. This procedure is divided into two steps. Firstly, we extract the history of the deformation gradient at all deformed elements with a elasto-plastic finite element method using isotropic plasticity model. Secondly, we use this deformation gradient history to predict the crystallographic deformation texture based on the Bishop-Hill theory. Renouard and Wintenberger' method is chosen for selecting the active slip systems. The predicted results have been compared with reported experimental results. The calculated results are in good agreement with their results.

  • PDF

Study on the Sheet Rolling by a Rigid-Plastic Finite Element Method Considering Large Deformation Formulation (강소성 대변형 유한요소법을 이용한 판재 압연연구)

  • 김동원;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.145-153
    • /
    • 1991
  • A numerical simulation of the nonsteady state rolling process in the plane strain condition is presented in the basis of the rigid-plastic finite element method by considering large deformation. In order to apply the large deformation theory to the numerical method for sheet rolling problems, constitutive equation relating 2nd-Piola Kirchhoff stress and Lagrangian strain which reflect geometrical nonlinearity is used. To confirm the validity of the developed algorithm, the analysis of the neutral flow region, roll separating force, torque, pressure and stress/strain distributions on the workpiece is conducted from the bite of the material until the steady state is reached. The computed results of the roll force and torque in the present finite element analysis are lower than those corresponding to small strain theory. The pressure distribution at the work piece-roll interface is found to show the typical 'friction hill' type only. The peak value in near the neutral region, however, is good agrements with the existing results. the neutral region, however, is good agrements with the existing results. The frictional force at the roll interface provide detailed information about the neutral point where the shear forces change direction. In addition, the analysis also includes the effect and influence of material condition, strip thickness, work roll diameter, as well as roll speed and lubricant on each deformation process.

Flow Simulation and Deformation Analysis for Injection Molded Plastic Lenses using Solid Elements (입체요소를 사용한 플라스틱 렌즈의 사출성형 및 후변형 해석)

  • Park, Geun;Han, Chul-Yup
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.784-787
    • /
    • 2003
  • The present work covers three-dimensional flow simulation and deformation analysis of injection molded plastic lenses using solid elements. A numerical scheme to evaluate part deformation has been proposed from the results of injection molding analysis. Proposed scheme has been applied to the injection molding processes of optical plastic lenses: a spherical lens and an aspheric lens for a photo pick-up device. Through the simulation processes. residual stress is estimated and the final deformed patters are obtained for both products. The reliability of the proposed approach has also been verified in comparison with the results of real experiments.

  • PDF

A Study on the Sheet Metal Forming and the Plastic Deformation Characteristic by Using PAM-STAMP (PAM-STAMP를 이용한 박판성형성 및 소성변형 특성에 관한 연구)

  • Kang, Dae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.29-38
    • /
    • 1999
  • In this paper the forming simulation of circular bulge by using PAM-STAMP has been performed to estimate the sheet metal forning and the plastic deformation characteristic of circular bulge. The uniaxial tension tests adn bulge tests are carried out for studying the forming characteristics of materials, and also Moire experiment are carried out for measuring the radius of curvature of the bulge and the polar compressive thickness strain. In order to compare the simulation results with the experiment and Hills theory, the relationships between redius of curvature adn polar height of the bulge, between hydraulic pressure and polar height, and between polar compressive thickness strain and polar height, are used. According to this study, the results of simulation and Hills theory are good agreement to the experiment. So, the results of simulation by using PAM-STAMP and Hills theory will give engineers good information to assess the formagbility and plastic deformation characteristic of hydraulic circular bulge test.

  • PDF

A Study on Seismic Performance of High-Strength Steel(POSTEN60, POSTEN80) Pipe-Section Piers using 3-Dimensional Elastic-Plastic Finite Deformation Analysis (3차원 탄소성 유한변위해석을 이용한 고강도(POSTEN60, POSTEN80) 원형강교각의 내진성능에 관한 연구)

  • Chang, Kyong-Ho;Jang, Gab-Chul;Kang, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.45-54
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high-strength steels is increasing gradually. For seismic design of steel structures using high-strength steels(POSTEN60, POSTEN80), analytical method, can describe the large deformation and inelastic cyclic behavior generated by non-proportional cyclic loading, are required. In this paper, cyclic plasticity model was proposed by results of monotonic loading tests ant cyclic loading tests. Three-dimensional finite element analysis is developed by using proposed model and finite deformation theory and verified as compare with experiment result. Using 3-dimensional elastic-plastic finite deformation analysis, seismic analysis of high-strength steel pipe-section piers are carried out. Also, seismic performance of high-strength steel pipe-section piers in parameter of diameter-thickness ratio was clarified.

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang;Binhui Jiang;Fa-xing Ding;Zhiwu Yu
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.469-484
    • /
    • 2023
  • The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.