• 제목/요약/키워드: Finite macro-element

검색결과 97건 처리시간 0.022초

입자요소를 이용한 미세 성형 부품의 유한요소 해석 및 실험 (FE Analysis and Experiments of Milli-fart forming Using Grain and Grain Boundary Element)

  • 구태완;강범수
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.109-118
    • /
    • 2003
  • The recent trend towards miniaturization causes an increased demand for parts with very small dimensions. Milli-structure components are classified as a component group whose size is between macro- and micro-scale. The manufacturing process of these components of thin sheet metal forming has a microscopic properties in addition to a typical phenomenon of bulk deformation because of the forming size. Also, the material properties and the deformation behavior change with miniaturization, which means that, a coarse grained materials show a higher resistance against deformation, when the grain size is in the range of the sheet thickness. In this study, a new numerical approach is proposed to simulate intergranular milli-structure in forming by the finite element method. The grain element and grain boundary element are introduced to simulate the milli-structure in the bending. The grain element is used to analyze the deformation of individual grain while the grain boundary element is for the investigation on the movement of the grain boundary. Also, the result of the finite element analysis is confirmed by a series of milli-sized forming experiments.

압전섬유작동기를 이용한 형상적응날개 (Morphing wing using Macro Fiber Composite actuator)

  • 나영호;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.9-12
    • /
    • 2005
  • Recently, research on the morphing wing is an interesting issue to develop the capability of the wing such as improving the lift and reduction of drag during the operation of an aircraft by changing the wing shape from one configuration to another. A more efficient weight reduction of the wing using smart or morphing wing concept can be achieved in comparison with the conventional flaps. In this study, it is investigated the behaviors of the morphing wing using Macro Fiber Composite (MFC) actuators. Generally, MFC is the piezocomposite actuator with the rectangular PZT fiber and epoxy matrix, and uses the interdigitated electrode to produce more powerful actuation in the in-plane direction. Furthermore, it can produce the twisting actuation as compared with the traditional PZT actuators. In the formulation, the first-order shear deformation plate theory is used, and finite element method is adopted in the numerical analysis of the model. Results show the characteristics of the static behavior of the morphing wing according to the change of the actuation voltage.

  • PDF

접촉요소를 적용한 전통목조 도리방향 프레임의 변위이력 시뮬레이션에 관한 연구 (Simulation of displacement history using contact element in traditional wooden frame)

  • 황종국;홍성걸;정성진;이영욱;김남희;배병선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.421-426
    • /
    • 2006
  • To examine the behaviors of traditional wooden structural frame in Korea in direction of beam, an experimental study was performed. The interior frame of Daewoongjeon of Bongjeongsa was selected as a model, which has two short exterior columns and one high inside column. The experimental frame has 1/2 scale and lateral forces are applied at high inside column by using drift control. The vertical gravity loads are applied on the frame. From the results of experiment it was shown that the stiffness and lateral capacity of the frame was increased when vertical loads are applied and the force-drift relationship in positive load direction was not same as in negative load direction. And push-over analysis are performed by using macro model in which the rotational and shear springs which were derived from the another experiments of subassemblies were used. The numerical analysis with macro model showed a good correspondence with the experiment within 2% story drift.

  • PDF

MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어 (Active Vibration Control of Smart Hull Structure in Underwater Using Micro-Fiber Composite Actuators)

  • 권오철;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.466-471
    • /
    • 2008
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezoceramic actuator named as Macro-Fiber Composite (MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear-Quadratic-Gaussian (LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

  • PDF

Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method

  • Polat, Alper;Kaya, Yusuf
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.247-253
    • /
    • 2022
  • In this study, the problem of discontinuous contact in two functionally graded (FG) layers resting on a rigid plane and loaded by two rigid blocks is solved by the finite element method (FEM). Separate analyzes are made for the cases where the top surfaces of the problem layers are metal, the bottom surfaces are ceramic and the top surfaces are ceramic and the bottom surfaces are metal. For the problem, it is accepted that all surfaces are frictionless. A two-dimensional FEM analysis of the problem is made by using a special macro added to the ANSYS package program The solution of this study, which has no analytical solution in the literature, is given with FEM. Analyzes are made by loading different Q and P loads on the blocks. The normal stress (σy) distributions at the interfaces of FG layers and between the substrate and the rigid plane interface are obtained. In addition, the starting and ending points of the separations between these surfaces are determined. The normal stresses (σx, σy) and shear stresses (τxy) at the point of separation are obtained along the depth. The results obtained are shown in graphics and tables. With this method, effective results are obtained in a very short time. In addition, analytically complex and long problems can be solved with this method.

검사체적 방법을 이용한 평직의 투과율 계수 예측 (Permeability prediction of plain woven fabric by using control volume finite element method)

  • Y. S. Song;J. R. Youn
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

고차 판 유한요소의 기하학적 비선형 해석 (Geometrically Nonlinear Analysis of Higher Order Plate Bending Finite Element)

  • 신영식
    • 대한토목학회논문집
    • /
    • 제8권3호
    • /
    • pp.1-10
    • /
    • 1988
  • 본 연구에서는 고차 판 유한요소의 판의 기하학적 비선형 해석에의 적용성을 고찰한다. 고차판요소는 3 차원 연속체로부터 Total Lagrangian 형태로 나타낸 운동방정식을 이산화하고 고차 판이론을 도입하여 유도한다. 유한변형을 고려한 기하학적 비션형 방정식은 Newton-Raphson반복법으로 내력벡터를 선형화하여 강도매트릭스를 반복계산하여 푼다. 요소매트릭스는 shear locking 현상을 피하기 위하여 Gauss 적분법을 이용한 선택적 감차적분으로 계산한다. 여러가지 예제해석을 통하여 고차 판요소의 효율성과 정확도를 고찰하였다.

  • PDF

펄라이트 강 선재 인발에서 미세조직 변화 모델링 (Modeling Microstructural Changes in Steel Wire Drawing)

  • 윤상헌;이용신;남원종;박경태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.271-272
    • /
    • 2008
  • This paper is concerned with the prediction of micro structural changes of pearlitic steel wire during clod drawing. The most important microstructural aspects are ferrite/cementite interlamellar spacing, cementite shape and thickness, since those are crucial factors to determine the mechanical strength of pearlitic steel. In this study, a couple of new algorithms to predict the above microstructural changes are developed based on the deformation histories of macro material points obtained from finite element simulations for pearlitic steel wire drawing. Some predictions are shown. The special features of the algorithms developed in this study are discussed in details.

  • PDF

MFC 작동기를 이용한 Hull 구조물의 진동 저감 (Vibration Suppression of Hull Structure Using MFC Actuators)

  • 손정우;김흥수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.587-595
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC(macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

MFC 작동기를 이용한 Hull 구조물의 진동 저감 (Vibration Suppression of Hull Structure Using MFC Actuators)

  • 손정우;김흥수;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1119-1124
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC (macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF