• Title/Summary/Keyword: Finite difference time domain method

Search Result 360, Processing Time 0.044 seconds

Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity (지하공동 탐지를 위한 3차원 시간영역 유한차분 GPR 탐사 모델링)

  • Jang, Hannuree;Kim, Hee Joon;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Recently many sinkholes have appeared in urban areas of Korea, threatening public safety. To predict the occurrence of sinkholes, it is necessary to investigate the existence of cavity under urban roads. Ground-penetrating radar (GPR) has been recognized as an effective means for detecting underground cavity in urban areas. In order to improve the understanding of the governing physical processes associated with GPR wave propagation, and interpret underground cavity effectively, a theoretical approach using numerical modeling is required. We have developed an algorithm employing a three-dimensional (3D) staggered-grid finite-difference time-domain (FDTD) method. This approach allows us to model the full electromagnetic wavefield associated with GPR surveys. We examined the GPR response for a simple cavity model, and the modeling results showed that our 3D FDTD modeling algorithm is useful to assess the underground cavity under urban roads.

Numerical Simulation of Ground-Penetrating Radar Signals for Detection of Metal Pipes Buried in Inhomogeneous Grounds (비균일 지하에 매설된 금속관 탐지를 위한 지하탐사레이다 신호의 수치 모의계산)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • The effects of subsurface inhomogeneities on the detection of buried metal pipes in ground-penetrating radar(GPR) signals are investigated numerically. To model the electrical properties of the subsurface inhomogeneities, the continuous random media(CRM) generation technique is introduced. For the electromagnetic simulation of GPR signals, the finite-difference time-domain(FDTD) method is implemented. As a function of the standard deviation and the correlation length of the relative permittivity distribution for a randomly inhomogeneous ground, the GPR signals of the buried metal pipes are compared using numerical simulations. As the subsurface inhomogeneities increase, the GPR signals of the buried pipes are distorted because of the effect of the subsurface clutter.

Developing a simulator for Super-RENS/ROM disk using finite difference time domain method (Super-ROM/RENS 디스크 구조의 재생신호 해석을 위한 유한차분 시간구역 (FDTD) 방법을 이용한 시뮬레이터 개발)

  • Ahn Duck-Won;You Chun-Yeol
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.32-37
    • /
    • 2005
  • We developed a numerical simulator in order to study the Super-RENS/ROM (Super REsolution Near-Field Structure, Read Only Memory) using 3-dimensional FDTD (finite difference time domain) method. The simulation can be performed by three steps. In the first step, we utilized the vector-diffraction theory to calculate the characteristics of incident laser beam from the object-lens to the surface of the disk. At the second step, we fed the calculated result as an input for the main FDTD simulations on the optical layers in the disk structure. After performed the FDTD simulations, we took near-to-far field transformation for the reflected signal, from the surface of the disk to the detector. Finally, we can get reflected signal at the photo-diode. Using this developed simulator, we were able to study about the reading signal from various disk structures as a function of a laser beam position. We calculated reading signals for various pit sizes for Super-ROM structure, and it is found that the simple optical diffraction theory can not explain the reading mechanism of Super-ROM, and more complicated temperature dependent physics must be involved.

  • PDF

Polarization Selective Blazed Grating Employing Metal-slit Arrays (금속 슬릿 배열로 구성된 편광 선택 가능한 블레이즈드 회절 격자)

  • Jung, Young Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.53-57
    • /
    • 2013
  • A polarization selective blazed grating employing metal-slit arrays was proposed. Nano-scale metal-slits were applied to the micro-scale blazed grating to give the functionality of polarization selection. Case study was carried out for the proposed structure utilizing numerical FDTD (Finite Difference Time Domain method) simulation. Diffraction efficiency of 77.61% and polarization extinction ratio of 8.99 was achieved with arbitrary parameters and diffraction efficiency of 64.22% and polarization extinction ratio of 81.09 was achieved with other parameters to enhance extinction ratio.

Developing a simulator for Super-RENS/ROM disk using finite difference time domain method (Super-ROM/RENS 디스크 구조의 재생신호 해석을 위한 유한차분시간구역 (FDTD) 방법을 이용한 시뮬레이터 개발)

  • Ahn, Duck-Won;You, Chun-Yeol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • We developed a numerical simulator in order to study the Super-RENS/ROM (Super REsolution Near-Field Structure, Read Only Memory) using 3-dimensional FDTD (finite difference time domain) method. The simulation can be performed by three steps. In the first step, we utilized the vector-diffraction theory to calculate the characteristics of incident laser beam from the object-lens to the surface of the disk. At the second step, we fed the calculated result as an input for the main FDTD simulations on the optical layers in the disk structure. After performed the FDTD simulations, we took near-to-far field transformation for the reflected signal, from the surface of the disk to the detector. Finally, we can get reflected signal at the photo-diode. Using this developed simulator, we were able to study about the reading signal from various disk structures as a function of a laser beam position. We calculated reading signals for various pit sizes for Super-ROM structure, and it is found that the simple optical diffraction theory can not explain the reading mechanism of Super-ROM, and more complicated temperature dependent physics must be involved.

  • PDF

Characteristic Changes in Ground-Penetrating Radar Responses from Dielectric-Filled Nonmetallic Pipes Buried in Inhomogeneous Ground (비균일 지하에 묻혀있는 유전체 충진 비금속관에 의한 지표투과레이다 응답의 특성 변화)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2019
  • The variation of ground-penetrating radar(GPR) signal characteristics from dielectric-filled nonmetallic pipes buried in inhomogeneous ground are compared through a numerical simulation. The relative permittivity distribution of the ground is generated by using the continuous random media(CRM) technique. As a function of the relative permittivity of the material filling the nonmetallic pipe buried in the ground media, GPR signals are simulated by using the finite-difference time-domain(FDTD) method. We show that, unlike the case for homogeneous ground, the distortion characteristics of the reflected waves caused by the front convex surface and the rear concave surface of the pipe buried in inhomogeneous ground are different depending on the permittivity contrast between the inside and outside of the pipe.

Transient Response Analysis of a Lumped Mass System Using Sensitivity Method in Time Domain (시간영역 민감도 방법을 이용한 집중 질량 구조물의 천이응답 해석)

  • 백문열;기창두
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.217-223
    • /
    • 1997
  • This paper deals with the basic concepts of sensitivity analysis in a time domain for the transient response of a lumped mass system. Sensitivity analysis methods in thme domain for determining the effects of parameter changes on the response of a dynamic system by external excitation are presented. The parametric sensitivity of a lumped mass system in time domain can be investigated using different types of sensitivity functions, including first order standard and percentage sensitivity functions. These sensitivity functions are determined as a function of partial derivatives of system variables taken with respect to system parameters. In addition, we compared the results of the analytical method by direct method and those of numerical methods.

  • PDF

A Numerical Study of Low Grazing Angle Backscattering from Random Rough Surfaces (不規則 粗面에서 저입사각 후방산란에 관한 수치해석)

  • Kwang-Yeol Yoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.590-598
    • /
    • 2002
  • We have numerically analyzed the electromagnetic wave scattering from randomly rough dielectric surfaces by using the finite volume time domain (FVTD) method. We have then shown that the present method yields a reasonable solution even at low-grazing angle (LGA). It should be noted that the number of sampling points per wavelength should be increased when more accurate numerical results are required, which fact makes the computer simulation impossible at LGA for a stable result. However, when the extrapolation is used for calculating the scattered field, an accurate result can be estimated. If we want to obtain the ratio of backscattering between the horizontal and vertical polarization, we do not need the large number of sampling points. The results are compared with the experimental data.

The Analysis of Lossy Dielectric using Surface Impedance Boundary Condition (표면 임피던스 경계조건을 이용한 손실유전체 해석)

  • Kim, Byung-Chan;Kim, Che-Young
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1744-1746
    • /
    • 1996
  • Surface impedance boundary condition(SIBC) concepts are introduced into the finite-difference time-domain(FDTD) method. Lossy conductors are replaced by surface impedance boundary computations reducing the soluton space and producing significant computational savings. Specifically, a surface impedance boundary condition is developed to reduce a lossy dielectric half-space. Since Maxwell's eqations are solved directly, the reflected and transmitted pulse amplitude demonstrate how the reflection and transmision coefficient determine reflected wave amplitude. In this paper, two implementations of reflection coefficient are presented. One implementation is a standard FDTD technique and the other is a FDTD using surface impedence boundary condition(FDTD-SIBC) that are applicabIe over a very large frequency bandwidth. Particulary, an efficient way to transform the time domain results to frequency domain is presented. Thus, frequency domain results are presented in one dimension and are compared with exact results.

  • PDF