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A Numerical Study of Low Grazing Angle Backscattering
from Random Rough Surfaces
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Abstract

We have numerically analyzed the electromagnetic wave scattering from randomly rough dielectric surfaces by
using the finite volume time domain (FVTD) method. We have then shown that the present method yields a
reasonable solution even at low-grazing angle (LGA). It should be noted that the number of sampling points per
wavelength should be increased when more accurate numerical results are required, which fact makes the computer
simulation impossible at LGA for a stable result. However, when the extrapolation is used for calculating the
scattered field, an accurate result can be estimated. If we want to obtain the ratio of backscattering between the
horizontal and vertical polarization, we do not need the large number of sampling points. The resuits are compared

with the experimental data.
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I. iIntroduction

Numerical solution techniques play an increasingly
important role in understanding and predicting
scattering from randomly rough surfaces. An exact

analytical solution for random rough surfaces does

not exist. However, the classical approximate
analytical solutions exist for rough surfaces with
specific types of surface roughness conditions. The
perturbation method applies to a slightly rough
whose root mean square (rms) height is smaller than

the wavelength!"™”, The Kirchhoff approximation is
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applicable to a surface whose radius of curvature is
much greater than the wavelength”™. In contrast to
classical approaches, the small-slope approximation
(SSA) of Voronovich™ is valid to only the roughness
of small slope. These are limited surface roughness
conditions.

In the numerical approaches with the remarkable
progress of computer, the integral equation (IE)
techniques[S}‘[6], finite-difference time-domain (FDTD)
and finite-volume time-domain (FVID) method'”
are shown to be useful for solving various problems
of electromagnetic wave scattering from rough
surfaces. These numerical methods are based on the
wave theory. In this context, numerical methods
seem to be well suited to the rough surface scattering
in the case of LGA. However, numerical methods
encounter difficulties at LGA because of the
limitation of computer resources. The incident wave
propagates repeating multiple scattering along the
rough surface at LGA and hence we need to analyze
such a long propagation.

Over the past few years, we have developed the
FVTD technique for the problem of the wave
scattering from lossy dielectric random rough
surfaces. We have found that questions regarding the
stability of solution with respect to sampling points
per wavelength exist”. In order for a numerical
computation to yield accurate results, the sampling
intervals should be taken to be much smaller than
the wavelength. As a result, it is difficult to compute
accurate results for the LGA from rough surface
scattering in particular, because the computer
resources are limited. It is recently reported that the
IE technique has not reached a stable solution for
randomly rough perfectly conducting surface by
using very short sampling interval and therefore
needs the curvature terms which are proportional to
the surface curvature at each point to obtain a stable
result’™,

The purpose of this paper is to develop an exact
numerical FVTD technique and to provide the highly

accurate numerical results for the problem of wave
scattering from lossy dielectric randomly rough
surfaces. We have found some important numerical
stability with respect to the sampling points, which
can be provided to estimate an accurate solution by
extrapolation. This finding prompted us to make a
more accuracy how the FVTD method is performed,
and what the role of the number of sampling point
is. The geometry of problem is shown in Fig. 1.

II. FVTD Formulation

In FVTD formulation, the Maxwell equations are
discretized on the basis of the volume integration
with respect to a small cell. In the Cartesian
coordinate system FVTD is equivalent to the
conventional FDTD. In order to apply to the
inhomogeneous  electromagnetic  problems, FVTD
employs averaged medium constants in each cell™.
Recently, it is reported that FDTD has also used the
same procedure with the averaged or effective
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Fig. 1. Problem geometry including FVTD com-
putational grid.
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Fig. 2. Approximation of general boundary Region
1 and Region 2 for arbitrary shaped surface.
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material parameters“”. Now we consider an arbi-
trarily shaped boundary between two different
electric and magnetic materials. One material is
denoted by the constants with €, =g, =1.0 and ¢,
=0, and the other is designated by the constants ( ¢
2 M, 01). We assume that one part of the (i, j)-th
cell is occupied by the former material with area
Region 1 and the other part is occupied by the latter
material with area Region 2 as shown in Fig. 2.
Then we can approximately evaluate the material
constants in the (ij)-th cell in an average fashion as

follows:
€ = £,1AS) +£,AS5, 1)
AS
- .urlASI +:ur2ASZ 2
My = 2)
, _ OAS +0,AS,
o =—1—1__—2
= ()
where
AS= AS[ +AS2=AxAy (4)

Now we summarize the FVTD formulations. For
computational reason, magnetic field is normalized
by the intrinsic impedance of free space in this
paper. We assign the averaged dielectric constant ¢
ry» electric conductivity ¢ in each cell. Then we
can define the averaged and discretized electric field
E.(ij) in the (ij)-th cell and in the n-th time point.
Similarly we have the magnetic field H"(i;) in the
n'-th time point where n'=n—1/2.

With these notations the FVTD equations for

horizontal polarization are expressed as follows!'":
H™G ) =EH ,)) )

~0 AV [E G, j+ D)= EJ G, j-1)] (
H{™G,/)=E"H] () ©)

~THAMENG+1, /) - EXGi~1, )]

E*'G, j)=QYELG, )
~TBYIHI G+ D - HT G- 1) (7)
+ T B H I G+, )= H) T -1, )]
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The FVTD equations for the vertical polarization are
expressed as follows [10]:
H™G, ) =EYH] G, )
~AJAVELG D -E{G =D (8)
+ A/ AVEYi+1, /) - Ej(i -1, /)

EMG, ) =QYELG,)) o
BTG )= HE G 1) )
EG,j)=QYE[ (,))

+ /B[ HIY G +1,))-H™ (i—l,j)](lo)

The step parameters used above are defined by

EY = exp(-,, ;) (11a)
i cAt
g oA 11
B4 2p'ri,ij5y ( )
i~ 1—exp(—,, ;) (11c)
ami,j
QY = exp(-01;) (11d)
iy At
g A o
=2, Aoy (1le)
g o 1T exPC,) (119)
a;;
G = I A (11g)
Holyi, j
o, = Jut (11h)
gogri,j

where Jx and Ay are the spatial increment and At
is the time difference. Moreover, c¢=1/y gyu, is
the light velocity in free space.

In the FVTD computation we have assumed the
incident wave to be a modified Gaussian beam ' as
follows:

Fl(x,p)=exp{—jk(xsin8, — ycos6,)[1+ w(x, )]

12)

-exp{—()c+ytan6,-)2 /g%

where F ! is either the E ! or H ! field, depending
on the polarization considered. In (12) the g, is the

grazing angle of incident wave, k= 2x/1 is wave
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number in free space and where A is the electro-

magnetic wavelength in free space. Moreover,

2(x+ ytand,)? /g> -1)
(kgcos@i)2

w(x,y) = (13)
where g is the parameter that controls the tapering
and gives an acceptable tapering at the edges.

[l. Far-Field Conversion and Scattering
Cross Section

FVTD allows us to compute near field data in the
time domain just inside the perfectly matched layer
(PML) region[m, and thus the near-field data in the
spectral domain are given by performing discrete
Fourier transform. As a result, far-field data can be
calculated by the Kirchhoff-Huygens principle. The
usual derivation procedure for near-field to far-field
transformations starts with the surface equivalence
theorem from which the equivalent electric and
magnetic currents can be extracted on a surface
enclosing the scattering object. The scattered field in
the far-field can be derived by integrating the
equivalent currents multiplied with a free space
Green's function!"”). In this study, we treat the FVTD
method for a two-dimensional scattering problem
with a one-dimensional rough surface as shown in
Fig. 3. For vertical polarization we obtain for

magnetic scattered field as

. ety _
Hi=- jk—m J—L, [-H (x,L,)sin8, + E(x,L,)ldx
xexp(jk(xcosf, +L,sinb,)) (14)

and for horizontal polarization the electric scattered
field can be given by

) ot I4)
El=- jkw f_; [~E.(x,L,)sin®, + H (x,L,)}dx
xexp(jk(xcosf, + L, sin,)) (15)

where E.(x,L,), Hi(xL,), H:ixL,), and E(xL,) are
field values on the horizontal portion of the dashed
path in Fig. 3. Along the dashed path in this figure

xy)

observation
point

47 c

computational domain

|

F
a

Fig. 3. Computational domain in which the scatte-
red field propagate.

phasor quantities for E., H,, H, and E. are obtained
from the FVTD algorithm.

The bistatic normalized radar cross section
(NRCS) is defined by [7] as follows:

2
2nr

F

¢%6,,8,)=lim

r—roo J‘

where F$ is given by F! =H: for wvertical

- 5 (16)
F!(x,0) dx

polarization and F} = E} for horizontal polarization.
The backscattered NRCS is as follows:
0 0
Opse (01) =0 (eia_ei) (17)

The scattering coefficient 70 is defined in terms

of the projected area of the incident wave (13,

2mr|F,) ’
¥°(6,,8,) = lim > (18)
r—oo i
cos, [|F} (x,0) dx
Thus we have
°(6;,8,)=cos6; °(6,.,) (19)

For the random rough surface the NRCS is
averaged over an ensemble of finite surface
realizations to obtain an ensemble average of NRCS
<0%86:,05>. According to the computational
procedures described above, we can obtain the
scattered far fields for two different polarizations,
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ot and o%,,, for one rough surface profile. Then

we can calculate the averaged backscattering ratio of

the horizontal to vertical polarizations as follows:

0
<G(hh) >

(20

Rownivwy = 0
<O >

IV. Numerical results

In the numerical simulation, the relative permitti-
vity of soil at soil moisture of 15% are chosen as ¢
= 10.8, p,= 1.0 and ¢,= 0.106 (S/m) at L band
(1.43 GHz)"®. We consider the rms slope angles of
the Gaussian random rough surfaces. The rms slope
s is defined by as follows:

szJ_Z‘?:tany 21

where » denotes the rms height, / is the correlation
length, and 7 is the rms slope angle.

4-1 Convergence with Respect to the Number
of Sampling Points

First, we consider the convergence of numerical
solution with respect to sampling points per wave-
length. In order for a numerical computation to yield
accurate results, the sampling intervals should be
taken to be much smaller than the wavelength. To
make sure the accuracy of computation, we need to
check the numerical convergence of backscattering
coefficients by changing the number of sampling
points per wavelength as follows;

do=ty =2 (N=20, 40, 80, 160) 22)
where A is the wavelength in free space. Increasing
the number, we can estimate an accurate value by
extrapolation based on Lagrange's method™. To do
this, we express f{x) in the following form:

1= G 23)

—xWF'(x))
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where

F(x)=ﬁ(x—-xj):(x—xl)(x—x2)-~-(x—-xm) (24)

j=1

_dF(»)

F'(x) o

(25)

For the incident angle of 80°, the surface length
L is selected as 102.4 A, and the tapering parameter
in this case is g = L/4 to ensure that the effects of
edge diffraction can be neglected for the incident and
scattering angles of interest. An example of results
calculated with COMPAQ ALPHA STATION XP
1000 is shown in Table 1 where the CPU time and
memory requirements for one realization are tabu-
lated to show roughly the scale of computation.

Fig. 4 shows the backscattering coefficients from
six realizations of random rough lossy dielectric
surfaces whose tms slope angle 7 is all 25.2°. Note
that some results have not reached the extrapolated
value even at sampling points of 160. Because the
average of backscattering coefficients is required in
random rough surface scattering, we take the average
for 50 surface realizations. As a result, Fig. 5 shows
that even for the sampling points of 160 the
backscattering coefficient still has not reached its
final value and that we need larger number of
sampling points to obtain accurate solutions. If,
however, extrapolation is used for calculating the
backscattering coefficient, an accurate solution is
easily obtained because the numerical results show a
good convergence as shown in Fig. 3.

Next it is of interest to examine what occurs as

the correlation length increases for a fixed A. This is

Table 1. The CPU time and memory require-
ments for one realization.

Cell size(1/ 1) | CPU time (sec) | Memory (Mbytes)
120 35.73 7.6
1/40 263.15 26.1
1/80 1630.32 55.9
1/160 14901.46 1837 |
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Fig. 4. Comparison of the variation of backscatte-
ring coefficients with respect to the num-
ber of sampling points per wavelength in
case of single realization of Gaussian sur-
face for h = 024, 1 =064, y=252".

equivalent to decreasing the rms slope angle for a
fixed h. In Fig. 6, we have used the correlation
length of 2.0 A and 4.0 A. The comparison between
Figs. 4 and 5 shows effects of decreasing rms slope
angles from 25.2° to 4.02° for a fixed A. For small
slope surfaces, the stable result is obtained at
sampling points of 40 when the correlation length is
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Fig. 5. Comparison of the variation of backscatte-
ring coefficients with respect to the num-
ber of sampling points per wavelength in
case of 50 realizations of Gaussian surface
for h =024,1=064, v=252".
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Fig. 6. Convergence with respect to the number of
sampling points per wavelength in case of
50 realizations of Gaussian small-slope
surface.

larger than the wavelength for a fixed 4. In other
words, the backscattering coefficient converges fast
when the surface correlation length is larger than the
wavelength, as shown in Fig. 6. However, the
backscattering coefficient converges slowly when the
surface correlation length is smaller than the wave-
length, as shown in Fig, 5.

Moreover, we plot the horizontal and vertical
polarization backscattering in Fig. 7 by using the
same roughness as used in Fig. 5. It should be
emphasized from Fig. 7 that the backscattering ratios
of two different polarizations is numerically stable.
The difference between the ratio at sampling points
160 and 20 is only 1.5 dB. This result suggests that
the sampling points of 20 are enough for calculating
the ratio of backscattering.

To summarize these results, it was demonstrated
that many sampling points per wavelength should be
used when accurate numerical results are needed for
large-slope surfaces. In other words, it is difficult to
compute accurate results for the LGA scattering on
rough surfaces of various roughness parameters.
Other methods such as IE technique have also the

same difﬁcultyls]. If, again, extrapolation is used for
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Fig. 7. Comparison of backscattering coefficients
with respect to the number of sampling
points per wavelength in case of 50 reali-
zations of Gaussian large-slope surface for
horizontal and vertical polarization.

calculating the backscattering coefficient, a more
accurate solution is easily estimated because the
numerical results show a good convergence as shown
in Fig. 7. We emphasize that the use of the FVID
and extrapolation method does not need troublesome
analytic treatments such as the estimate of curvature
terms at each surface point used in [5].

4-2 Comparison with Experimental Data

We compare the presented numerical results with
experimental data of the reference [15] for the ratio
of backscatiering cross sections between horizontal
and vertical polarizations. The accuracy of the FVTD
method when compared with experiment depends on
many factors, such as the angles of incidence and the
surface statistics. The material constants of the rough
surface are selected to simulate seawater as e, =
514, p,; =10 and 5,=21.75(5/m) at X band (10.0
GHz)"™. This approximation is reasonable since
seawater is a fairly high-loss medium at microwave
frequencies. We use many different types of the
Gaussian randomly rough surfaces. We chose the cell
size as Ax=Jy=1/20 and it is enough for
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calculating the ratio of two different polarizations as
mentioned in Section 4-1. For incident angles up to
70°, we use 200 A surfaces, but we increase this
value to 500 A for incident angles up to 80°.

In Figs. 8 and 9, the polarization ratio calculated
from in the Appendix (A1) by the SPM for a lossy
dielectric surface is evaluated and plotted as a
function of incident angle (solid line). Also plotted is
the polarization ratio calculated from in the
Appendix (A2) by the SPM for a perfect conducting
surface (dashed line), and the experimental data
(squares) from reference™. Of course the FVTD
results are plotted in these figures. The SPM result
agrees with the experimental data at incident angles
smaller than 70° when the appropriate dielectric
constant is used'”. At incident angles of more than
70°, however, the SPM result begins to deviate from
the experimental data. In the FVTD simulations
using roughness parameters such as b = 024 , [ =
5.0A (solid circles), the results are almost in good
agreement over incident angles between 20° and 80°

(5] We also show the ratio of

with experimental data
backscattering cross sections between two polariza-

tions at incident angles of more than 80° in Fig. 9.
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Fig. 8. The ratio of backscattering cross section
between two polarizations and comparison
among the FVTD, SPM and Experimental
data [35] in case of #,;<80°, L=2004,
and the ensemble average for 50 surfaces.
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and the ensemble average for 50 surfaces.

It is shown that both results of experiment and
simulation with 2=024 and /=504 are in
substantial agreement at incident angle of 85° and
that the SPM result gives much smaller ratio than the
FVTD numerical simulations.

V. Conclusion

The electromagnetic waves scattering from ran-
dom rough lossy dielectric surfaces are numerically
analyzed by using the finite-volume time-domain
method. It is shown that the present method yields
a reasonable solution even at low-grazing-angle
(LGA) backscattering. On the FVTD solution, we
found some important results for the numerical
convergence with respect to the sampling points. The
backscattering coefficient converges fast when the
surface correlation length is larger than the
wavelength, while it converges slowly when the
surface correlation length is smaller than the
wavelength. The number of sampling points per
wavelength should be increased when more accurate
numerical results are required, which fact suggests
that the computer simulation becomes difficult at

LGA. However, when the extrapolation is used for
calculating the scattered field, an accurate result can
be estimated. Moreover, for calculating the polari-
zation ratio of backscattering cross sections, we do
not need the large number of sampling points.
These results show that the number of sampling
points required 1o give a good accuracy depends on
the observation target. In addition, it is indicated that
the FVTD results are in good agreement with the

experimental data.

Appendix

When a plane wave is incident on a random rough
surface of complex dielectric constant at an angle,
Rice® derived by the small perturbation method
{SPM) the formulas that led to the average cross
section per unit area for horizontally and vertically
polarized backscatter from the surface”, They are
given by

cr,?,,(B,):Mrk“cos”Gi e-h | W {(2ksin8,.0)

‘I{cosG, +{e—sin @) P

(Al-a)
for horizontal polarization and

2
(g = Djz(1 +sin?6) —sin?8,

a0 (8,) = 4mk* cos’ B,
B = o O 8, (e —sin 6T |

W(2ksin8,,0)

{Al-b)

for vertical polarization where k=2 7/ A is the wave
number in free space, and W{(+) is the two-
dimensional wave number spectral density of the
surface roughness, For a perfectly conducting sur-
face, there are

o0, (8;) = dmk " cos® 8, W(2k sinB,.0) (A2-a)
and
o8} =4mk* (L+sin® 8, ) W(2k sin6,0) (A2-b)
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