• 제목/요약/키워드: Finite cylinder

검색결과 594건 처리시간 0.022초

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

Influence of the cylinder height on the elasto-plastic failure of locally supported cylinders

  • Jansseune, Arne;De Corte, Wouter;Vanlaere, Wesley;Van Impe, Rudy
    • Steel and Composite Structures
    • /
    • 제12권4호
    • /
    • pp.291-302
    • /
    • 2012
  • Frequently, steel silos are supported by discrete supports or columns to permit easy access beneath the barrel. In such cases, large loads are transferred to the limited number of supports, causing locally high axial compressive stress concentrations in the shell wall above the supports. If not dealt with properly, these increased stresses will lead to premature failure of the silo due to local instability in the regions above the supports. Local stiffening near the supports is a way to improve the buckling resistance, as material is added in the region of elevated stresses, levelling these out to values found in uniformly supported silos. The aim of a study on the properties of local stiffening will then be to increase the failure load, governed by an interaction of plastic collapse and elastic instability, to that of a discrete supported silo. However, during the course of such a study it was found that, although the failure remains local, the cylinder height is also a parameter that influences the failure mechanism, a fact that is not properly taken into account in current design practice and codes. This paper describes the mechanism behind the effect of the cylinder height on the failure load, which is related to pre-buckling deformations of the shell structure. All results and conclusions are based on geometrically and materially non-linear finite element analyses.

원주방향 경사관통균열이 존재하는 두꺼운 배관의 탄성 균열열림변위 (Elastic Crack Opening Displacement of Slanted Circumferential Through-Wall Cracks in Thick-Walled Cylinder)

  • 한태송;허남수;심도준;김진수;이진호
    • 한국압력기기공학회 논문집
    • /
    • 제8권3호
    • /
    • pp.13-22
    • /
    • 2012
  • According to recent research on leak-rate estimates to assess rupture probabilities of nuclear piping which contains a circumferential surface/through-wall cracks due to PWSCC, i.e., xLPR (Extremely Low Probability of Rupture) program, it has been revealed that the use of crack shape with an idealized circumferential through-wall crack during actual crack growth can lead to overestimate of the leak-rate. Thus, for accurate estimation of the leak-rate during crack growth, the more realistic crack shape that can simulate the crack shape transition from surface crack to through-wall crack should be used. In this context, in the present study, the elastic crack opening displacement of slanted circumferential through-wall crack in thick-walled cylinder was proposed based on 3-dimensional elastic finite element fracture mechanics analyses. To propose the elastic crack opening displacement of slanted circumferential through-wall crack in thick-walled cylinder, the geometric variables affecting crack opening displacement, i.e., thickness of cylinder, reference inner crack length and slant crack ratio were systematically varied. In terms of loading conditions, axial tension, global bending moment and internal pressure were considered. The present results can be applied to calculate the leak-rate considering more realistic crack shape transition from surface crack to idealized through-wall crack, and can be expected to enhance current leak-rate estimation scheme, for instance, in xLPR program etc.

Finite element application of an incremental endochronic model to flexible pavement materials

  • Kerh, Tienfuan;Huang, C.Y.
    • Structural Engineering and Mechanics
    • /
    • 제6권7호
    • /
    • pp.817-826
    • /
    • 1998
  • A finite element model based on the incremental endochronic theory for flexible pavement materials was developed in this study. Three grid systems with eight-node cubic isoparametric elements, and different loading steps were used to perform the calculations for a specimen of circular cylinder. The uniaxial stress experimental results on an asphalt mixture at $60^{\circ}C$ in SHRP conducted by University of California at Berkeley were used to check the ability of the derived numerical model. Then, the numerical results showed isotropic response and deviatoric response on the specimen in a three dimensional manner, which provided a better understanding for a deformed flexible material under the specified loading conditions.

냉매순환을 고려한 왕복동형 압축기의 피스톤 슬랩현상에 대한 유한요소 해석 (Finite Element Analysis of Piston Slap Phenomenon in Reciprocating Compressors Considering Coolant Circulation)

  • 문승주;조진래;김현옥
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1087-1094
    • /
    • 2003
  • The piston slap phenomenon occurs when the piston collides with the internal wall of the cylinder. Impact force caused by piston slap is one of the major mechanical noise sources in reciprocating compressors. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, forces acting on piston by considering the dynamic behavior of suction and discharge valves are analytically calculated and the piston slap caused by the piston secondary motion is investigated by the finite element method.

차분격자볼츠만법에 ALE모델을 적용한 이동물체 주위의 흐름 및 유동소음의 수치모사 (Computations of Flows and Acoustic Wave Emitted from Moving Body by ALE Formulation in Finite Difference Lattice Boltzmann Model)

  • 강호근
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.48-54
    • /
    • 2006
  • In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in the finite difference lattice Boltzmann method. Some effects are checked by comparing flaw about a square cylinder in ALE formulation and that in the fixed coordinates, and both agree very well. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer region is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in two- and three-dimensional cases are simulated.

축대칭 문제에서의 동적 응력집중 해석 (Numerical Analysis of Dynamic Stress Concentrations in Axisymmetric Problems)

  • 심우진;이성희
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2364-2373
    • /
    • 2002
  • In this paper, the finite element equations for the time-domain numerical analysis of transient dynamic axisymmetric problems are newly presented. which are based on the equations of motion in convolution integral as in the previous paper. A hollow cylinder subjected to a sudden internal pressure is solved first as a benchmark problem and then the dynamic stress concentrations are analyzed in detail far hollow cylinders having inner and outer circumferential grooves subjected to sudden internal or axial loadings, all the computed results are compared with the existing or the computed ones obtained by using the commercial finite element packages Nastran and Ansys to show the validity and capability of the presented method.

임의 경계조건을 가진 원통셸 구조의 유체영향계수 해석 (An Analysis on the Fluid-Loading Coefficients of Cylindrical Shell Structure With Arbitrary end Conditions)

  • 전재진;정우진
    • 소음진동
    • /
    • 제6권3호
    • /
    • pp.297-303
    • /
    • 1996
  • The general approach using sine series expansions was represented to evaluate the radiation loading from a vibrating surface on a simply supported cylinder. In this paper, the fluid-loading coefficients (radiation impedance) for a submerged finite cylindrical shell with an arbitrary end condition are defined and evaluated. The vibrations of cylindrical shell are expressed by using cosine series expansions to analyze the radiation impedance for a finite cylindrical shell. It is possible to represent the displacements at both ends of cylindrical shell in comparison with sine series. The direct and cross modal components of fluid-loading coefficients are shown and the validity of cosine series expansions are verified from the results of numerical computations. This approach and results are directly applicable in the analysis of sound radiation from subemerged finite cylindrical shell with arbitrary end conditions.

  • PDF

안정화된 유한요소법을 이용한 진동하는 2차원 물체 주의 유동해석 (A STABILZED FINITE ELEMENT COMPUTATION OF FLOW AROUND OSCILLATING 2D BODIES)

  • 안형택;라술 라힐
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.289-294
    • /
    • 2010
  • Numerical stud of an oscillating body in incompressible fluid is performed. Stabilized finite element method comprising of Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulations of linear triangular elements was employed to solve 2D incompressible Navier-Stokes equations whereas the motion of the body was considered by incorporating the arbitrary Langrangian-Eulerian(ALE) formulation. An algebraic moving mesh strategy is utilized for obtaining body conforming mesh deformation at each time step. Two tests cases, namely motion of a circular cylinder and of an airfoil in incompressible flow were analyzed. The model is first validated against the stationary cases and then the capability to handle moving boundaries is demonstrated.

  • PDF

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • 제16권2호
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.