• Title/Summary/Keyword: Finite array

Search Result 417, Processing Time 0.026 seconds

Effect of Finite Substrate Size on the Radiation Characteristics of H-plane Linear Array Antennas (유한한 기판 크기가 H-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-49
    • /
    • 2013
  • The effect of the finite substrate size on the radiation characteristics of H-plane linear microstrip array antennas is investigated. The radiation characteristics versus scan angle are systematically analyzed for 5-element H-plane linear array antennas with various substrate sizes and element spacings for the substrates with different dielectric constants. The distance between the antenna center and the substrate edge on the E-plane for the enhancement of the radiation characteristics of the array antenna is presented.

Effect of a Finite Substrate on the Radiation Characteristics of a Linear Phased Array Antenna Positioned along the E-plane (유한한 기판 크기가 E-평면으로 배열된 선형 위상 배열 안테나의 방사 특성에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.46-53
    • /
    • 2011
  • The effect of a finite substrate on the radiation characteristics of a linear 7-element array antenna positioned along the E-plane is investigated. Active reflection coefficients and average active element patterns are simulated for various substrate sizes. The E-plane radiation pattern of a fully excited array for various scan angles is correlated with the active reflection coefficient and average acitive element pattern. The effect of E-plane substrate size on the radiation characteristics of a linear array along the E-plane is larger than that of H-plane substarte size.

A study on the permanent levitation system for Maglev train (자기부상열차의 영구자석 부상계에 대한 연구)

  • Moon, Seok-Jun;Yun, Dong-Won;Cho, Hung-Je;Park, Sung-Whan;Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.82-87
    • /
    • 2007
  • A Halbach array is a special arrangement of permanent magnets which augments the magnetic field on one side of the device while cancelling the field to near zero on the other side. The application of this Halbach array magnet to the electrodynamic suspension for Maglev train has been recently studied in order to increase the levitation capability. This paper is focused on analytical method of the magnetic levitation system using Halbach array magnet. The suitability of the proposed method is verified with comparing to a finite element method. From this study, it is confirmed that the proposed method provides a reasonable solution with a little analysis time to the finite element method and the magnetic levitation system using Halbach array magnet is stable dynamically.

  • PDF

Dual-Halbach Array Permanent Magnet Tubular Generator for Free-Piston Generator

  • Beigi, Hassan Moradi Cheshmeh;Akbari, Sohrab
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.405-412
    • /
    • 2015
  • In this study, we describe the effects of changing the magnet shape of permanent magnets (PMs) in a rotor Halbach-array PM generator for reciprocating free piston generator applications. More specifically, the rectangular-shaped magnets were replaced by the trapezoidal-shaped magnets. The initial design, an analytical magnetic field solution of rectangular shaped magnets, is presented and air-gap magnetic flux density and thrust force were estimated. The results were compared to the finite element analysis (FEA) showing excellent agreement. Using FEA, the effect of the shape of the magnets on the flux density and thrust force waveforms is analyzed. Moreover, the proportion of the Halbach array in the machine was optimized by the means of a parametric search. The results obtained from the analytical calculations and FEA were validated by comparing to those of Radial-array PM generator.

Design and Strength Evaluation of an Anodically Bonded Pressurized Cavity Array for Wafer-Level MEMS Packaging (기판단위 밀봉 패키징을 위한 내압 동공열의 설계 및 강도 평가)

  • Gang, Tae-Gu;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.11-15
    • /
    • 2001
  • We present the design and strength evaluation of an anodically bonded pressurized cavity array, based on the energy release rate measured from the anodically bonded plates of two dissimilar materials. From a theoretical analysis, a simple fracture mechanics model of the pressurized cavity array has been developed. The energy release rate (ERR) of the bonded cavity with an infinite bonding length has been derived in terms of cavity pressure, cavity size, bonding length, plate size and material properties. The ERR with a finite bonding length has been evaluated from the finite element analysis performed for varying cavity and plate sizes. It is found that, for an inter-cavity bonding length greater than the half of the cavity length, the bonding strength of cavity array approaches to that of the infinite plate. For a shorter bonding length, however, the bonding strength of the cavity array is monotonically decreased with the ratio of the bonding length to the cavity length. The critical ERR of 6.21J/㎡ has been measured from anodically bonded silicon-glass plates. A set of critical pressure curves has been generated for varying cavity array sizes, and a design method of the pressurized cavity array has been developed for the failure-free wafer-level packaging of MEMS devices.

Optimal design of a sparse planar array sensor for underwater vehicles (수중 운동체용 희소 평면배열 센서의 최적 설계)

  • Afzal, Muhammad Shakeel;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.53-59
    • /
    • 2018
  • In this study, a new design method is developed to optimize the structure of an underwater sparse array sensor. The purpose of this research is to design the structure of a sparse array that has the performance equivalent to a fully sampled array. The directional factor of a sparse planar array is derived as a function of the structural parameters of the array. With the derived equation, the structure of the sparse array sensor is designed to have the performance equivalent to that of the fully array sensor through structural optimization of the number and location of transmitting and receiving elements in the array. The designed sparse array sensor shows beam patterns very close to those of the fully array sensor in terms of PSLL (Peak Side Lobe Level) and MLBW (Main Lobe Beam Width), which confirms the effectiveness of the present optimal design method. Further, the validity of the analytic beam patterns is verified by comparing them with those from the FEA (Finite Element Analysis) of the optimized sparse array structure.

Process Design of Multi-Step Drawing using Artificial Neural Network (신경망을 이용한 다단 인발의 공정설계)

  • 김동환;김동진;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.144-147
    • /
    • 1997
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network), has been considered. The investigated problem involves the adequate selection of the drawing die angle and the correspondent reduction rate sequence in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite element simulation are selected by using orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study, it is shown that the new technique using ANN is useful method in application to the wide range of metal forming process.

  • PDF

Analysis of microstrip patch array antenna characteristics using finite difference time domain algorithm (유한차분시간영역 알고리듬을 이용한 마이크로스트립 패치 배열 안테나 특성해석)

  • 홍용인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.197-205
    • /
    • 1998
  • The purpose of this paper is to analyze the electromagnetic field characteristics of array antenna with the finite difference-time domain algorithm. Finite difference equations of Maxwell's equations are defined in cylindrical coordinate systems. To simulate the unbounded problem like a free space, the Mur's absorbing boundary condition is also used. After modeling the array antenna with the grid structure, the transient response of the field distribution is depicted in the time domain.

  • PDF

Effect of a Finite Substrate Size on the Radiation Characteristics of Two-Element Linear E-plane Array Antennas (유한한 기판 크기가 2소자 E-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.95-110
    • /
    • 2012
  • The effect of a finite substrate size on the radiation characteristics of a two-element linear E-plane array antenna using microstrip patch antennas is investigated. The average active element pattern characteristics of two-element E-plane array antennas printed on different dielectric constant substrates with various substrate sizes and element spacings are analyzed. Using the average active element pattern, the radiation pattern characteristics of the array antenna versus scan angle is analyzed. The simulation results show that the diffracted fields of surface waves from substrate edges have a significant effect on the radiation characteristics of a 2-element E-plane array antenna. The distance between the center of patch antenna and the substrate edges on the E-plane for the enhancement of radiation characteristics of the array antenna is about $0.35{\lambda}_0$.

Accurate Simulation of a Shallow-etched Grating Antenna on Silicon-on-insulator for Optical Phased Array Using Finite-difference Time-domain Methods

  • Seo, Dong-Ju;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.522-530
    • /
    • 2019
  • We present simulation methods to accurately determine the transmission efficiency and far-field patterns (FFPs) of a shallow-etched waveguide grating antenna (WGA) formed on a silicon-on-insulator wafer based on the finite-difference time-domain (FDTD) approach. The directionality and the FFP of a WGA with >1-mm in length can be obtained reliably by simulating a truncated WGA structure using a three-dimensional FDTD method and a full-scale WGA using a two-dimensional FDTD with the effective index method. The developed FDTD methods are applied to the simulation of an optical phased array (OPA) composed of a uniformly spaced WGA array, and the steering-angle dependent transmission efficiency and FFPs are obtained in OPA structures having up to 128-channel WGAs.