DOI QR코드

DOI QR Code

Accurate Simulation of a Shallow-etched Grating Antenna on Silicon-on-insulator for Optical Phased Array Using Finite-difference Time-domain Methods

  • Received : 2019.07.26
  • Accepted : 2019.10.16
  • Published : 2019.12.25

Abstract

We present simulation methods to accurately determine the transmission efficiency and far-field patterns (FFPs) of a shallow-etched waveguide grating antenna (WGA) formed on a silicon-on-insulator wafer based on the finite-difference time-domain (FDTD) approach. The directionality and the FFP of a WGA with >1-mm in length can be obtained reliably by simulating a truncated WGA structure using a three-dimensional FDTD method and a full-scale WGA using a two-dimensional FDTD with the effective index method. The developed FDTD methods are applied to the simulation of an optical phased array (OPA) composed of a uniformly spaced WGA array, and the steering-angle dependent transmission efficiency and FFPs are obtained in OPA structures having up to 128-channel WGAs.

Keywords

References

  1. M. J. R. Heck, "Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering," Nanophotonics 6, 93-107 (2017). https://doi.org/10.1515/nanoph-2015-0152
  2. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, "Large-scale nanophotonic phased array," Nature 493, 195-199 (2013). https://doi.org/10.1038/nature11727
  3. K. V. Acoleyen, W. Bogaerts, J. Jagerska, N. L. Thomas, R. Houdre, and R. Baets, "Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator," Opt. Lett. 34, 1477-1479 (2009). https://doi.org/10.1364/OL.34.001477
  4. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, "Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator," Opt. Express 19, 21595-21604 (2011). https://doi.org/10.1364/OE.19.021595
  5. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, "On-chip silicon optical phased array for two-dimensional beam steering," Opt. Lett. 39, 941-944 (2014). https://doi.org/10.1364/OL.39.000941
  6. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, "Integrated phased array for wide-angle beam steering," Opt. Lett. 39, 4575-4578 (2014). https://doi.org/10.1364/ol.39.004575
  7. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, "Fully integrated hybrid silicon two dimensional beam scanner," Opt. Express 23, 5861-5874 (2015). https://doi.org/10.1364/OE.23.005861
  8. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Opt. Lett. 42, 4091-4094 (2017). https://doi.org/10.1364/OL.42.004091
  9. H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, "Two-dimensional beam-steering device using a doubly periodic Si photoniccrystal waveguide," Opt. Express 26, 9389-9397 (2018). https://doi.org/10.1364/OE.26.009389
  10. W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, "Heterogeneous silicon photonics sensing for autonomous cars," Opt. Express 27, 3642-3663 (2019). https://doi.org/10.1364/oe.27.003642
  11. S. H. Kim, J. B. You, Y. G. Ha, G. Kang, D. S. Lee, H. Yoon, D. E. Yoo, D. W. Lee, K. Yu, C. H. Youn, and H. H. Park, "Thermo-optic control of the longitudinal radiation angle in a silicon-based optical phased array," Opt. Lett. 44, 411-414 (2019). https://doi.org/10.1364/OL.44.000411
  12. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Freshali, and H. Rong, "High-resolution aliasing-free optical beam steering," Optica 3, 887-890 (2016). https://doi.org/10.1364/OPTICA.3.000887
  13. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, "Sparse aperiodic arrays for optical beam forming and LIDAR," Opt. Express 25, 2511-2528 (2017). https://doi.org/10.1364/OE.25.002511
  14. D. Zhang, F. Zhang, and S. Pan, "Grating-lobe-suppressed optical phased array with optimized element distribution," Opt. Commun. 419, 47-52 (2018). https://doi.org/10.1016/j.optcom.2018.03.007
  15. D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29, 2749-2751 (2004). https://doi.org/10.1364/OL.29.002749
  16. Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, "Design of broadband subwavelength grating couplers with low back reflection," Opt. Lett. 40, 4647-4650 (2015). https://doi.org/10.1364/OL.40.004647
  17. M. H. Lee, J. Y. Jo, D. W. Kim, Y. Kim, and K. H. Kim, "Comparative study of uniform and nonuniform grating couplers for optimized fiber coupling to silicon waveguides," J. Opt. Soc. Korea 20, 291-299 (2016). https://doi.org/10.3807/JOSK.2016.20.2.291
  18. T. Sharma, H. Kwon, J. Park, S. Han, G. Son, Y. Jung, and K. Yu, "Coupling performance enhancement using SOI grating coupler design," Opt. Commun. 427, 452-456 (2018). https://doi.org/10.1016/j.optcom.2018.06.012
  19. Y. S. Hong, C. H. Cho, and H. K. Sung, "Theoretical analysis of simultaneously improving the light coupling efficiency and bandwidth between two separated grating couplers using integrated distributed Bragg reflectors," J. Korean Phys. Soc. 71, 647-651 (2017). https://doi.org/10.3938/jkps.71.647
  20. M. Zhang, H. Liu, B. Wang, G. Li, and L. Zhang, "Efficient grating couplers for space division multiplexing applications," IEEE J. Sel. Top. Quantum Electron. 24, 8200605 (2018).
  21. H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, "FSR-free add-drop filter based on silicon gratingassisted contradirectional couplers," Opt. Lett. 38, 1-3 (2013). https://doi.org/10.1364/OL.38.000001
  22. B. Naghdi and L. R. Chen, "Silicon photonic contradirectional couplers using subwavelength grating waveguides," Opt. Express 24, 23429-23438 (2016). https://doi.org/10.1364/OE.24.023429
  23. B. Liu, Y. Zhang, Y. He, X. Jiang, J. Peng, C. Qiu, and Y. Su, "Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length," Opt. Express 25, 11359-11364 (2017). https://doi.org/10.1364/OE.25.011359
  24. M. Raval, C. V. Poulton, and M. R. Watts, "Unidirectional waveguide grating antennas with uniform emission for optical phased arrays," Opt. Lett. 42, 2563-2566 (2017). https://doi.org/10.1364/OL.42.002563
  25. FDTD Solutions, Lumerical Inc., Available: http://www.lumerical.com/tcad-products/fdtd/ (2019).
  26. E. D. Palik, Handbook of Optical Constants of Solids III, (Academic Press, Cambridge, MA, USA, 1998).
  27. M. Zadka, Y. C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, "On-chip platform for a phased array with minimal beam divergence and wide field-ofview," Opt. Express 26, 2528-2534 (2018). https://doi.org/10.1364/OE.26.002528
  28. K. Han, V. Yurlov, and N. E. Yu, "Highly directional waveguide grating antenna for optical phased array," Curr. Appl. Phys. 18, 824-828 (2018). https://doi.org/10.1016/j.cap.2018.04.004