• Title/Summary/Keyword: Finite Volume

Search Result 1,929, Processing Time 0.028 seconds

Computation of Water and Air Flow with Submerged Hydrofoil by Interface Capturing Method

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.789-795
    • /
    • 2000
  • Free-surface flows with an arbitrary deformation, induced by a submerged hydrofoil, are simulated numerically, considering two-fluid flows of both water and air. The computation is performed by a finite volume method using unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell wise local mesh refinement. The integration in space is of second order, based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels. The linear equations are solved by conjugate gradient type solvers, and the non-linearity of equations is accounted for through Picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations, the continuity equation, the conservation equation of one species, and the equations for two turbulence quantities. Finally, a comparison is quantitatively made at the same speed between the computation and experiment in which the grid sensitivity is numerically checked.

  • PDF

Deformation Analysis of Self-regulating Bellows in Joule-Thomson Cryocooler (줄-톰슨 극저온 냉각기용 벨로우즈의 변형해석)

  • Lee, Sang-Eun;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.100-107
    • /
    • 2008
  • Bellows is an important component in Joule-Thomson cryocooler, which minimize the excessive flow of the cryogenic gas. The bellows is made of Monel 400 and its geometry is an axial symmetric shell. During cool-down process, the pressure and volume within bellows must be satisfied with Benedict-Webb-Rubin state equation. Moreover, Poisson's ratio of Monel 400 is nearly constants, but its Young's modulus varies for a drop in temperature. Under these conditions, bellows contracts in the axial direction like a spring. To evaluate deformation of bellows at cryogenic temperature, the numerical calculation of the volume within bellows and finite element analysis are iteratively used in this research. the numerical results show that deformation of the bellows is approximately linear for change of temperature.

Numerical Analysis for Linear and Nonlinear Attenuation Characteristics of Exhaust Silencer Systems (배기 소음기의 선형 및 비선형 감쇄 특성에 대한 수치해석)

  • 김종태;김용모;맹주성;류명석;구영곤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.179-189
    • /
    • 1996
  • An unstructured grid finite-volume method has been applied to predict the linear and nonlinear attenuation characteristics of the expansion chamber silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically silencer system. In order to achieve a grid flexibility and a solution adaptation for geometrically complex flow regions associated with the actual silencers, the unstructured mesh algorithm in context with the node-centered finite volume method has been employed. The present numerical model has been validated by comparison with the analytical solutions and the experimental data for the acoustic field of the concentric expansion chamber with and without pulsating flows, as well as the axisymmetric blast flowfield with open end. Effects of the chamber geometry on the nonlinear wave attenuation characteristics is discussed in detail.

  • PDF

NATURAL CONVECTION AROUND A HEAT CONDUCTING AND GENERATING SOLID BODY INSIDE A SQUARE ENCLOSURE WITH DIFFERENT THERMAL BOUNDARIES

  • NITHYADEVI, NAGARAJAN;UMADEVI, PERIYASAMY
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.459-479
    • /
    • 2015
  • Two-dimensional steady laminar natural convection around a heat conducting and generating solid body inside a square enclosure with different thermal boundaries is performed. The mathematical model is governed by the coupled equation of mass, momentum and energy. These equations are discretized by finite volume method with power-law scheme and solved numerically by SIMPLE algorithm with under-relaxation technique. Effect of Rayleigh number, temperature difference ratio of solid-fluid, aspect ratio of solid-enclosure and the thermal conductivity ratio of solid-fluid are investigated numerically for Pr = 0.7. The flow and heat transfer aspects are demonstrated in the form of streamlines and isotherms respectively.

Modeling the Dual-Fuel Combustion of Natural Gas and Pilot Distillate Injected Directly into a Diesel Combustion Bomb (디젤연소용기에 직접분사된 천연가스와 파일럿오일의 복합연소 모델링)

  • 최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.155-164
    • /
    • 1996
  • Dual-fuel engines are being researched with emphasis on the possible types of natural gas supply systems. Hence, a three-dimensional combustion model by using finite volume method was developed to provide a fundamental understanding of the auto-ignition of pilot distillate and subsequent burning of natural gas, when the natural gas as well as the distillate was directly injected into a quiescent diesel engine like combustion bomb tests and the numerical results were investigated for the mixed combustion phenomena. With high-pressure natural gas injection, it was found that the gaseous fuel injection characteristics had to be well harmonised with that of the pilot distillate. For better combustion efficiency, however, further researches are required for the optimisation of injection system in the existence of air motion.

  • PDF

Topology Optimization of an Electromagnetic Coupler Considering Force Direction (힘의 방향성을 고려한 전자기 커플러의 위상 최적화)

  • Yang, Seung-Jin;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.230-235
    • /
    • 2006
  • The machine locking system is an important device for the safety of persons using the machine. In this study, a locking system using electromagnetic fields is proposed to decrease the defects and the cost for repairing and maintenance of the existing locking system using structural mechanism. We analyze the electromagnetic locking system and calculate the generated force considering direction by the finite element method. Also, we set up two design domains for the topology optimization; first domain is optimized to reduce the volume and the other is optimized to maximize the generated force keeping the volume, especially. The optimal design is obtained by integration of the two optimized results. An improved design is obtained by the optimal topology and it is confirmed by comparison with the initial locking system.

  • PDF

Pyroeffects on magneto-electro-elastic sensor bonded on mild steel cylindrical shell

  • Kondaiah, P.;Shankar, K.;Ganesan, N.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.537-554
    • /
    • 2015
  • Magneto-electro-elastic (MEE) materials under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroeffects such as pyroelectric and pyromagnetic. The pyroeffects on the behavior of multiphase MEE sensor bonded on top surface of a mild steel cylindrical shell under thermal environment is presented in this paper. The study aims to investigate how samples having different volume fractions of the multiphase MEE sensor behave due to pyroeffects using semi-analytical finite element method. This is studied at an optimal location on a mild steel cylindrical shell, where the maximum electric and magnetic potentials are induced due to these pyroeffects under different boundary conditions. It is assumed that sensor and shell is perfectively bonded to each other. The maximum pyroeffects on electric and magnetic potentials are observed when volume fraction is $v_f$ = 0.2. Additionally, the boundary conditions significantly influence the pyroeffects on electric and magnetic potentials.

Numerical Analysis of Swirling Turbulent Flow in a Pipe (원관내 난류 선회류의 수치해석)

  • Lee, D.W.;Kim, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.396-405
    • /
    • 1995
  • Numerical calculations are carried out for the swirling turbulent flow in a pipe. Calculations are made for the flow with swirl parameter of 2.25 and the Reynolds number of 24,300. The turbulence closure models used in these calculations are two different types of Reynolds stress model, and the results are compared with those of $k-{\varepsilon}$ model and the experimental data. The finite volume method is used for the discretization, and the power-law scheme is employed as a numerical scheme. The SIMPLE algorithm is used for velocity-pressure correction. The computational results show that GL model gives the results better than those of SSG model in the predictions of velocity and stress components.

  • PDF

Prediction of strongly swirling turbulent flow downstream of an abrupt pipe expansion (원관내 급확대부 하류의 강선회난류에 관한 수치해석)

  • Kim, K.Y.;Chang, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1997
  • Swirling turbulent flows downstream of an abrupt axisymmetric expansion in a pipe are analyzed numerically by a second-order turbulence closure. Predictions for the flows without swirl and with strong swirl are obtained. The governing differential equations are discretized by finite volume approach. The results show that the on-axis recirculation induced by the strong swirl is correctly reproduced. The predictions for mean velocity components and turbulent normal stresses agree well with experimental data far downstream of expansion, but show large discrepancies in wall-bounded recirculation zone.

  • PDF

Prediction of Three-Dimensional Solder Joint Profile in Gullwing Lead using Finite Element Modeling (유한요소 모델링을 이용한 Gullwing 리드의 3차원 솔더 접합부 형상 예측)

  • 최동필;유증돈;이태수
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.109-116
    • /
    • 1998
  • The three-dimensional profile of a solder fillet is predicted by minimizing the surface tension and gravity energies of the solder joint using finite element modeling. Geometric complexity stemming from the inclined plane of the gullwing lead is resolved by employing three element types. These element types are used to describe the joint profile formed on the vertical, inclined and interfacial planes. The predicted solder joint profiles show good agreements with the experimental data provided that the solder volume is adjusted considering the wicking effects. Effects of the pad length, inclined lead angle and solder volume on joint profiles are also investigated.

  • PDF