Browse > Article
http://dx.doi.org/10.12989/sss.2015.16.3.537

Pyroeffects on magneto-electro-elastic sensor bonded on mild steel cylindrical shell  

Kondaiah, P. (Department of Mechanical Engineering, School of Engineering & Technology, Mahindra Ecole Centrale)
Shankar, K. (Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras)
Ganesan, N. (Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras)
Publication Information
Smart Structures and Systems / v.16, no.3, 2015 , pp. 537-554 More about this Journal
Abstract
Magneto-electro-elastic (MEE) materials under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroeffects such as pyroelectric and pyromagnetic. The pyroeffects on the behavior of multiphase MEE sensor bonded on top surface of a mild steel cylindrical shell under thermal environment is presented in this paper. The study aims to investigate how samples having different volume fractions of the multiphase MEE sensor behave due to pyroeffects using semi-analytical finite element method. This is studied at an optimal location on a mild steel cylindrical shell, where the maximum electric and magnetic potentials are induced due to these pyroeffects under different boundary conditions. It is assumed that sensor and shell is perfectively bonded to each other. The maximum pyroeffects on electric and magnetic potentials are observed when volume fraction is $v_f$ = 0.2. Additionally, the boundary conditions significantly influence the pyroeffects on electric and magnetic potentials.
Keywords
pyroelectric; pyromagnetic; magneto-electro-elastic sensor; cylindrical shell; semi-analytical finite element;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct., 10(5), 867-877.   DOI
2 Biju, B., Ganesan, N. and Shankar, K. (2011), "Dynamic response of multiphase magneto-electro-elastic sensors using 3D magnetic vector potential approach", IEEE Sens. J., 11(9), 2169 -2176.   DOI   ScienceOn
3 Bravo-Castillero, J., Rodriguez-Ramos, R., Mechkour, H., Otero, J. and Sabina, F.J. (2008), "Homogenization of magneto-electro-elastic multilaminated materials", Q. J. Mech. Appl. Math., 61(3), 311-322.   DOI
4 Chen, J., Pan, E. and Chen, H. (2007), "Wave propagation in magneto-electro-elastic multilayered plates", Int. J. Solids Struct., 44(3-4), 1073-1085.   DOI   ScienceOn
5 Daga A., Ganesan, N. and Shankar, K. (2009), "Behavior of magneto-electro-elastic sensors under transient mechanical loading", Sensor Actuat. A -Phys., 150(1), 46-55.   DOI
6 Ganesan, N., Kumaravel, A. and Sethuraman, R. (2007), "Finite element modeling of a layered, multiphase magnetoelectroelastic cylinder subjected to an axisymmetric temperature distribution", J. Mech. Mater. Struct., 2(4), 655-674.   DOI
7 Gao, C.F. and Noda, N. (2004), "Thermal-induced interfacial cracking on magnetoelectroelastic materials", Int. J. Eng. Sci., 42(13-14), 1347-1360.   DOI   ScienceOn
8 Guiffard, B., Zhang, J.W., Guyomar, D., Garbuio, L., Cottinet, P.J. and Belouadah, R. (2010), "Magnetic field sensing with a single piezoelectric ceramic disk: Experiments and modeling", J. Appl. Phys., 108(9), 094901.   DOI
9 Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013a), "Micromechanical Modeling of Piezo-Magneto-Thermo-Elastic Composite Structures: Part I . Theory", Eur. J. Mech. A. Solids, 39, 298-312.   DOI
10 Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013b), "Micromechanical modeling of P. Kondaiah, K. Shankar and N. Ganesan piezo-magneto-thermo-elastic composite structures: Part II . theory", Eur. J. Mech. A. Solids, 39, 313-327.   DOI
11 Kalamkarov, A.L., Andrianov, I.V. and Vladyslav V., Danishevs'kyy (2009), "Asymptotic homogenization of composite materials and structures", Appl. Mech. Rev., 62(3), 030802 (20pp).   DOI
12 Kalamkarov, A.L. (2014), "Asymptotic homogenization method and micromechanical models for composite materials and thin-walled composite structures", Chapter 1 in Mathematical Methods and Models in Composites, Imperial College Press, London.
13 Mahieddine, A. and Quali, M. (2008), "Finite element formulation of a beam with piezoelectric patch", J. Eng. Appl. Sci., 3, 803-807.
14 Ryu, J., Priya, S., Uchino, K. and Kim, H.E. (2002), "Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials", J. Electroceram., 8(2), 107-119.   DOI   ScienceOn
15 Nan, C.W., Bichurin, M.I., Shuxiang D., Viehland, D. and Srinivasan, G. (2008), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions", J. Appl. Phys., 103(3), 031101, 1-35.   DOI
16 Ootao, Y. and Ishihara, M. (2011), "Exact solution of transient thermal stress problem of the multilayered magneto-electro-thermoelastic hallow cylinder", J. Solid Mech. Mater. Eng., 5, 90-103.   DOI
17 Pan, E. and Wang, R. (2009), "Effects of geometric size and mechanical boundary conditions on magnetoelectric coupling in multiferroic composites", J. Phys. D: Appl. Phys., 42(24), 7, 245503.   DOI
18 Sirohi, J. and Copra, I. (2000), "Fundamental understanding of piezoelectric strain sensors", J. Intel. Syst. Str., 11(4), 246-257.   DOI
19 Soh, A.K. and Liu, J.X. (2005), "On the constitutive equations of magnetoelectroelastic solids", J. Intel. Mat. Syst. Str., 16(7-8), 597-602.   DOI
20 Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40(9), 1846-1851.   DOI
21 Wu, T.L. and Huang, J.H. (2000), "Closed-form solutions for the magneto-electric coupling coefficients in Fibrous composites with piezoelectric and piezomagnetic phases", Int. J. Solids Struct., 37(21), 2981-3009.   DOI