DOI QR코드

DOI QR Code

Pyroeffects on magneto-electro-elastic sensor bonded on mild steel cylindrical shell

  • Kondaiah, P. (Department of Mechanical Engineering, School of Engineering & Technology, Mahindra Ecole Centrale) ;
  • Shankar, K. (Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras) ;
  • Ganesan, N. (Machine Design Section, Department of Mechanical Engineering, Indian Institute of Technology Madras)
  • Received : 2014.06.06
  • Accepted : 2015.01.23
  • Published : 2015.09.25

Abstract

Magneto-electro-elastic (MEE) materials under thermal environment exhibits pyroelectric and pyromagnetic coefficients resulting in pyroeffects such as pyroelectric and pyromagnetic. The pyroeffects on the behavior of multiphase MEE sensor bonded on top surface of a mild steel cylindrical shell under thermal environment is presented in this paper. The study aims to investigate how samples having different volume fractions of the multiphase MEE sensor behave due to pyroeffects using semi-analytical finite element method. This is studied at an optimal location on a mild steel cylindrical shell, where the maximum electric and magnetic potentials are induced due to these pyroeffects under different boundary conditions. It is assumed that sensor and shell is perfectively bonded to each other. The maximum pyroeffects on electric and magnetic potentials are observed when volume fraction is $v_f$ = 0.2. Additionally, the boundary conditions significantly influence the pyroeffects on electric and magnetic potentials.

Keywords

References

  1. Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct., 10(5), 867-877. https://doi.org/10.1088/0964-1726/10/5/303
  2. Biju, B., Ganesan, N. and Shankar, K. (2011), "Dynamic response of multiphase magneto-electro-elastic sensors using 3D magnetic vector potential approach", IEEE Sens. J., 11(9), 2169 -2176. https://doi.org/10.1109/JSEN.2011.2112346
  3. Bravo-Castillero, J., Rodriguez-Ramos, R., Mechkour, H., Otero, J. and Sabina, F.J. (2008), "Homogenization of magneto-electro-elastic multilaminated materials", Q. J. Mech. Appl. Math., 61(3), 311-322. https://doi.org/10.1093/qjmam/hbn010
  4. Chen, J., Pan, E. and Chen, H. (2007), "Wave propagation in magneto-electro-elastic multilayered plates", Int. J. Solids Struct., 44(3-4), 1073-1085. https://doi.org/10.1016/j.ijsolstr.2006.06.003
  5. Daga A., Ganesan, N. and Shankar, K. (2009), "Behavior of magneto-electro-elastic sensors under transient mechanical loading", Sensor Actuat. A -Phys., 150(1), 46-55. https://doi.org/10.1016/j.sna.2008.11.035
  6. Ganesan, N., Kumaravel, A. and Sethuraman, R. (2007), "Finite element modeling of a layered, multiphase magnetoelectroelastic cylinder subjected to an axisymmetric temperature distribution", J. Mech. Mater. Struct., 2(4), 655-674. https://doi.org/10.2140/jomms.2007.2.655
  7. Gao, C.F. and Noda, N. (2004), "Thermal-induced interfacial cracking on magnetoelectroelastic materials", Int. J. Eng. Sci., 42(13-14), 1347-1360. https://doi.org/10.1016/j.ijengsci.2004.03.005
  8. Guiffard, B., Zhang, J.W., Guyomar, D., Garbuio, L., Cottinet, P.J. and Belouadah, R. (2010), "Magnetic field sensing with a single piezoelectric ceramic disk: Experiments and modeling", J. Appl. Phys., 108(9), 094901. https://doi.org/10.1063/1.3503424
  9. Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013a), "Micromechanical Modeling of Piezo-Magneto-Thermo-Elastic Composite Structures: Part I . Theory", Eur. J. Mech. A. Solids, 39, 298-312. https://doi.org/10.1016/j.euromechsol.2012.11.009
  10. Hadjiloizi, D.A., Georgiades, A.V., Kalamkarov, A.L. and Jothi, S. (2013b), "Micromechanical modeling of P. Kondaiah, K. Shankar and N. Ganesan piezo-magneto-thermo-elastic composite structures: Part II . theory", Eur. J. Mech. A. Solids, 39, 313-327. https://doi.org/10.1016/j.euromechsol.2012.11.003
  11. Kalamkarov, A.L., Andrianov, I.V. and Vladyslav V., Danishevs'kyy (2009), "Asymptotic homogenization of composite materials and structures", Appl. Mech. Rev., 62(3), 030802 (20pp). https://doi.org/10.1115/1.3090830
  12. Kalamkarov, A.L. (2014), "Asymptotic homogenization method and micromechanical models for composite materials and thin-walled composite structures", Chapter 1 in Mathematical Methods and Models in Composites, Imperial College Press, London.
  13. Mahieddine, A. and Quali, M. (2008), "Finite element formulation of a beam with piezoelectric patch", J. Eng. Appl. Sci., 3, 803-807.
  14. Nan, C.W., Bichurin, M.I., Shuxiang D., Viehland, D. and Srinivasan, G. (2008), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions", J. Appl. Phys., 103(3), 031101, 1-35. https://doi.org/10.1063/1.2836410
  15. Ootao, Y. and Ishihara, M. (2011), "Exact solution of transient thermal stress problem of the multilayered magneto-electro-thermoelastic hallow cylinder", J. Solid Mech. Mater. Eng., 5, 90-103. https://doi.org/10.1299/jmmp.5.90
  16. Pan, E. and Wang, R. (2009), "Effects of geometric size and mechanical boundary conditions on magnetoelectric coupling in multiferroic composites", J. Phys. D: Appl. Phys., 42(24), 7, 245503. https://doi.org/10.1088/0022-3727/42/24/245503
  17. Ryu, J., Priya, S., Uchino, K. and Kim, H.E. (2002), "Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials", J. Electroceram., 8(2), 107-119. https://doi.org/10.1023/A:1020599728432
  18. Sirohi, J. and Copra, I. (2000), "Fundamental understanding of piezoelectric strain sensors", J. Intel. Syst. Str., 11(4), 246-257. https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
  19. Soh, A.K. and Liu, J.X. (2005), "On the constitutive equations of magnetoelectroelastic solids", J. Intel. Mat. Syst. Str., 16(7-8), 597-602. https://doi.org/10.1177/1045389X05051630
  20. Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modeling of thermopiezomagnetic smart structures", AIAA J., 40(9), 1846-1851. https://doi.org/10.2514/2.1862
  21. Wu, T.L. and Huang, J.H. (2000), "Closed-form solutions for the magneto-electric coupling coefficients in Fibrous composites with piezoelectric and piezomagnetic phases", Int. J. Solids Struct., 37(21), 2981-3009. https://doi.org/10.1016/S0020-7683(99)00116-X

Cited by

  1. Buckling analysis of skew magneto-electro-elastic plates under in-plane loading vol.29, pp.10, 2018, https://doi.org/10.1177/1045389X18758191
  2. A 3D finite element static and free vibration analysis of magneto-electro-elastic beam vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.465
  3. Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate vol.21, pp.4, 2015, https://doi.org/10.12989/sss.2018.21.4.493
  4. Assessment of Vibrational Frequencies and Static Characteristics of Multilayered Skew Magneto-Electro-Elastic Plates: A Finite Element Study vol.44, pp.1, 2020, https://doi.org/10.1007/s40997-018-0250-1
  5. On the static analysis of inhomogeneous magneto-electro-elastic plates in thermal environment via element-free Galerkin method vol.134, pp.None, 2015, https://doi.org/10.1016/j.enganabound.2021.11.002