• 제목/요약/키워드: Finite Fourier series

검색결과 101건 처리시간 0.029초

Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth

  • JangRyong Shin
    • 한국해양공학회지
    • /
    • 제37권6호
    • /
    • pp.256-265
    • /
    • 2023
  • Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total error was smaller, with a faster convergence speed.

해석해를 이용한 유한 요소 해석법 (Finite Element Analysis Using an Analytical Solution)

  • 허영우;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.458-463
    • /
    • 2000
  • The mechanical structures generally have discontinuous parts such as the cracks, notches and holes owing to various reasons. In this paper, in order to analyze effectively these singularity problems using the finite element method, a mixed analysis method which an analytical solution and finite element solutions are simultaneously used is newly proposed. As the analytical solution is used in the singularity region and the finite element solutions are used in the remaining regions except this singular zone, this analysis method reasonably provides for the numerical solution of a singularity problem. Through various numerical examples, it is shown that the proposed analysis method is very convenient and gives comparatively accurate solution.

  • PDF

Construction of the Spherical High-Order Filter for Applications to Global Meteorological Data

  • Cheong, Hyeong-Bin;Jeong, Han-Byeol
    • 한국지구과학회지
    • /
    • 제36권5호
    • /
    • pp.476-483
    • /
    • 2015
  • The high-order Laplacian-type filter, which is capable of providing isotropic and sharp cut-off filtering on the spherical domain, is essential in processing geophysical data. In this study, a spherical high-order filter was designed by combining the Fourier method with finite difference-method in the longitude and latitude, respectively. The regular grid system was employed in the filter, which has uniform angular spacing including the poles. The singularity at poles was eliminated by incorporating variable transforms and continuity-matching boundary conditions across poles. The high-order filter was assessed using the Rossby-Haurwitz wave, the observed geopotential, and observed wind field. The performance of the filter was found comparable to the filter based on the Galerkin procedure. The filter, employing the finite difference method, can be designed to give any target order of accuracy, which is an important advantage being unavailable in other methods. The computational complexity is represented with 2n-1 diagonal matrices solver with n being the target order of accuracy. Along with the availability of arbitrary target-order, it is also advantageous that the filter can adopt the reduced grid to increase computational efficiency.

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Modal Analysis of Coaxial Shells with Fluid-Filled Annulus

  • Jhung, Myung-Jo;Kim, Yong-Beum;Jeong, Kyeong-Hoon;Park, Suhn
    • Nuclear Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.328-341
    • /
    • 2000
  • Investigated in this study are the modal characteristics of the coaxial cylindrical shells with fluid-filled annulus. Theoretical method is developed to find the natural frequencies of the shell using the finite Fourier series expansion, and their results are compared with those of finite element method to verify the validation of the method developed. The effect of the fluid-filled annulus and the boundary conditions on the modal characteristics of the coaxial shells is investigated using a finite element modeling.

  • PDF

Self-adaptive hp 유한요소법을 이용한 단.장노말 전기검층에서 손데의 편향 효과 수치모델링 (Simulation of eccentricity effects on short- and long-normal logging measurements using a Fourier-hp-finite-element method)

  • 남명진;;;황세호;박권규;이창현
    • 지구물리와물리탐사
    • /
    • 제13권1호
    • /
    • pp.118-127
    • /
    • 2010
  • 전기검층은 지층의 전기비저항을 측정하는 물리검층법으로 전극배열에 따른 전기비저항 변화에서 지층내의 수포화도를 평가하는데 이용된다. 전기검층은 시추공 효과 및 인접한 지층의 두께와 전기비저항 들에 의해 많은 영향을 받는다. 이러한 시추공 효과 및 인접 지층의 영향은 시추공 내에서 전기검층 손데가 중심으로부터 편향되었을 때 더 커진다. 노말검층 손데가 시추공 내에서 편향되었을 때, 단노말과 장노말 검층자료의 정확한 해석의 기초를 마련하기 위해 검층손데의 편향에 의한 전기검층 자료의 왜곡을 수치모델링을 이용하여 분석하였다. 이를 위해 노말검층 손데의 편향으로 인한 3차원적 기하학적 구조를 단순화 시킬 수 있는 새로운 좌표 체계를 제안하고, 이 좌표계에서 Fourier 급수 전개(Fourier series expansion)를 수행하였다. 여러 개의 서로 연동된 이차원 문제들을 풀기 위하여 이차원 hp goal-oriented high-order self-adaptive hp (h는 셀의 크기, p는 근사 차수를 의미) 유한요소법에 기초한 알고리즘을 적용하였다. 이 알고리즘은 모델링 영역 내에서 자동적으로 각 격자 셀에서의 h와 p를 바꿔가면서 최적의 격자를 생생하여 원하는 정밀도의 해를 도출할 수 있다. 수치모델링 결과, 이 연구에서 제안한 알고리즘으로 정확하고 신뢰성 있는 해를 얻을 수 있었다. 검층손데의 편향 영향은 시추공경이나 시추공 이수의 전기비저항이 큰 경우, 그리고 지층의 전기비저항이 낮은 경우에 큰 것을 알 수 있었다.

선전류에 의해 발생되는 자장의 해석을 위한 유한요소법과 해석해의 결합 기법 (Analysis of Magnetic Fields Induced by Line Currents using Coupling of FEM and Analytical Solution)

  • 김영선;조대훈;이기식
    • 전기학회논문지P
    • /
    • 제55권3호
    • /
    • pp.141-145
    • /
    • 2006
  • The line current problem(2-dimensional space : point source) is not easy to analyze the magnetic field using the standard finite element method(FEM), such as overhead trolley line or transmission line. To supplement such a defect this paper is proposed the coupling scheme of analytical solution and FEM. In analysis of the magnetic field using the standard FEM. If the current region is a relatively small compared to the whole region. Therefore the current region must be finely divided using a large number of elements. And the large number of elements increase the number of unknown variables and the use of computer memories. In this paper, an analytical solution is suggested to supplement this weak points. When source is line current and the part of interest is far from line current, the analytical solution can be coupling with FEM at the boundary. Analytical solution can be described by the multiplication of two functions. One is power function of radius, the other is a trigonometric function of angle in the cylindrical coordinate system. There are integral constants of two types which can be established by fourier series expansion. Also fourier series is represented as the factor to apply the continuity of the magnetic vector potential and magnetic field intensity with tangential component at the boundary. To verify the proposed algorithm, we chose simplified model existing magnetic material in FE region. The results are compared with standard FE solution. And it is good agreed by increasing harmonic order.

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

Calculation of Magnetic Field for Cylindrical Stator Coils in Permanent Magnet Spherical Motor

  • Li, Hongfeng;Ma, Zigang;Han, Bing;Li, Bin;Li, Guidan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2158-2167
    • /
    • 2018
  • This paper analyzed the magnetic field produced by the cylindrical stator coils of permanent magnet spherical motor (PMSM). The elliptic equations about the vector magnetic potential were given. Given that the eddy current effects are neglected, the magnet field of the PMSM is regarded as irrotational field, which can be calculated by scalar magnetic potential. The current density of cylindrical stator coil was proposed based on the definition of current density. The expression of current density of stator coil was obtained according to the double Fourier series decomposition and spherical harmonic functions. Then the magnetic flux density for scalar magnetic potential was derived. Further, the influence of different parameters on radial flux density was also analyzed. Finally, the results by the analytical method in this paper were validated by finite element analysis (FEA).

푸리에 급수를 이용한 이족보행로봇의 보행 궤적 해석해 생성 (Analytic Solution for Stable Bipedal Walking Trajectory Generation Using Fourier Series)

  • 박일우;백주훈
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1216-1222
    • /
    • 2009
  • This article describes a simple method for generating the walking trajectory for the biped humanoid robot. The method used a simple inverted model instead of complex multi-mass model and a reasonable explanation for the model simplification is included. The problem of gait trajectory generation is to find the solution from the desired ZMP trajectory to CoG trajectory. This article presents the analytic solution for the bipedal gait generation on the bases of ZMP trajectory. The presented ZMP trajectory has Fourier series form, which has finite or infinite summation of sine and cosine functions, and ZMP trajectory can be designed by calculating the coefficients. From the designed ZMP trajectory, this article focuses on how to find the CoG trajectory with analytical way from the simplified inverted pendulum model. Time segmentation based approach is adopted for generating the trajectories. The coefficients of the function should be designed to be continuous between the segments, and the solution is found by calculating the coefficients with this connectivity conditions. This article also has the proof and the condition of solution existence.