Simulation of eccentricity effects on short- and long-normal logging measurements using a Fourier-hp-finite-element method

Self-adaptive hp 유한요소법을 이용한 단.장노말 전기검층에서 손데의 편향 효과 수치모델링

  • Nam, Myung-Jin (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Pardo, David (IKERBASQUE, Basque Foundation for Science and BCAM - Basque Centre for Applied Mathematics) ;
  • Torres-Verdin, Carlos (Department of Petroleum and Geosystems Engineering, The University of Texas) ;
  • Hwang, Se-Ho (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Park, Kwon-Gyu (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Chang-Hyun (Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 남명진 (한국지질자원연구원 지구환경연구본부) ;
  • ;
  • ;
  • 황세호 (한국지질자원연구원 지구환경연구본부) ;
  • 박권규 (한국지질자원연구원 지구환경연구본부) ;
  • 이창현 (한국지질자원연구원 지구환경연구본부)
  • Received : 2009.11.10
  • Accepted : 2009.12.09
  • Published : 2010.02.18

Abstract

Resistivity logging instruments are designed to measure the electrical resistivity of a formation, and this can be directly interpreted to provide a water-saturation profile. However, resistivity logs are sensitive to borehole and shoulder-bed effects, which often result in misinterpretation of the results. These effects are emphasised more in the presence of tool eccentricity. For precise interpretation of short- and long-normal logging measurements in the presence of tool eccentricity, we simulate and analyse eccentricity effects by combining the use of a Fourier series expansion in a new system of coordinates with a 2D goal-oriented high-order self-adaptive hp finite-element refinement strategy, where h denotes the element size and p the polynomial order of approximation within each element. The algorithm automatically performs local mesh refinement to construct an optimal grid for the problem under consideration. In addition, the proper combination of h and p refinements produces highly accurate simulations even in the presence of high electrical resistivity contrasts. Numerical results demonstrate that our algorithm provides highly accurate and reliable simulation results. Eccentricity effects are more noticeable when the borehole is large or resistive, or when the formation is highly conductive.

전기검층은 지층의 전기비저항을 측정하는 물리검층법으로 전극배열에 따른 전기비저항 변화에서 지층내의 수포화도를 평가하는데 이용된다. 전기검층은 시추공 효과 및 인접한 지층의 두께와 전기비저항 들에 의해 많은 영향을 받는다. 이러한 시추공 효과 및 인접 지층의 영향은 시추공 내에서 전기검층 손데가 중심으로부터 편향되었을 때 더 커진다. 노말검층 손데가 시추공 내에서 편향되었을 때, 단노말과 장노말 검층자료의 정확한 해석의 기초를 마련하기 위해 검층손데의 편향에 의한 전기검층 자료의 왜곡을 수치모델링을 이용하여 분석하였다. 이를 위해 노말검층 손데의 편향으로 인한 3차원적 기하학적 구조를 단순화 시킬 수 있는 새로운 좌표 체계를 제안하고, 이 좌표계에서 Fourier 급수 전개(Fourier series expansion)를 수행하였다. 여러 개의 서로 연동된 이차원 문제들을 풀기 위하여 이차원 hp goal-oriented high-order self-adaptive hp (h는 셀의 크기, p는 근사 차수를 의미) 유한요소법에 기초한 알고리즘을 적용하였다. 이 알고리즘은 모델링 영역 내에서 자동적으로 각 격자 셀에서의 h와 p를 바꿔가면서 최적의 격자를 생생하여 원하는 정밀도의 해를 도출할 수 있다. 수치모델링 결과, 이 연구에서 제안한 알고리즘으로 정확하고 신뢰성 있는 해를 얻을 수 있었다. 검층손데의 편향 영향은 시추공경이나 시추공 이수의 전기비저항이 큰 경우, 그리고 지층의 전기비저항이 낮은 경우에 큰 것을 알 수 있었다.

Keywords

References

  1. Anon., 1949, Resistivity departure curves, Schlumberger Document No. 3: Schlumberger Well Surveying Corporation.
  2. Anon., 1969, Resistivity departure curves, Schlumberger Document No. 3: Schlumberger Well Surveying Corporation.
  3. Demkowicz, L., 2006, Computing with hp-adaptive finite elements. Volume I: One and two dimensional elliptic and Maxwell problems: Chapman and Hall.
  4. Doll, H. G., 1951, The laterolog: A new resistivity logging method with electrodes using an automatic focusing system: Petroleum Transactions of the AIME, 192, 305–316.
  5. Doll, H. G., 1953, The microlaterolog: Petroleum Transactions of the AIME, 198, 17–31.
  6. Hakvoort, R. G., Fabris, A., Frenkel, M. A., Koelman, J. M. V. A., and Loermans, A. M., 1998, Field measurements and inversion results of the high-definition lateral log: 39th Ann. Log. Symp., Soc. Prof. Log Analysts, paper C.
  7. Heuveline, V., and Rannacher, R., 2003, Duality-based adaptivity in the hp-finite element method: Journal of Numerical Mathematics, 11, 95–113. doi:10.1515/156939503766614126
  8. Howard, A. Q., and Chew, W. C., 1992, Electromagnetic borehole fields in a layered, dipping-bed environment with invasion: Geophysics, 57, 451–465. doi:10.1190/1.1443259
  9. Nam, M. J., Pardo, D., and Torres-Verdín, C., 2009, Simulation of DC dual-laterolog measurements in complex formations: A Fourier-series approach with nonorthogonal coordinates and self-adapting finite elements: Geophysics, 74, E31–E43. doi:10.1190/1.3000681
  10. Oden, J. T., and Prudhomme, S., 2001, Goal-oriented error estimation and adaptivity for the finite element method: Computers & Mathematics with Applications, 41, 735–756. doi:10.1016/S0898-1221(00)00317-5
  11. Paraschivoiu, M., and Patera, A. T., 1998,Ahierarchical duality approach to bounds for the outputs of partial differential equations: Computer Methods in Applied Mechanics and Engineering, 158, 389–407. doi:10.1016/S0045-7825(99)00270-4
  12. Pardo, D., Demkowicz, L., Torres-Verdín, C., and Paszynski, D., 2006a, Simulation of resistivity logging-while-drilling (LWD) measurements using a self-adaptive goal-oriented hp-finite element method: SIAM Journal on Applied Mathematics, 66, 2085–2106. doi:10.1137/050631732
  13. Pardo, D., Demkowicz, L., Torres-Verdín, C., and Tabarovsky, L., 2006b, A goal-oriented hp-adaptive finite element method with electromagnetic applications. Part I: electrostatics: International Journal for Numerical Methods in Engineering, 65, 1269–1309. doi:10.1002/nme.1488
  14. Pardo, D., Torres-Verdín, C., and Demkowicz, L., 2007, Feasibility study for two dimensional frequency dependent electromagnetic sensing through casing: Geophysics, 72, F111–F118. doi:10.1190/1.2712058
  15. Pardo, D., Torres-Verdín, C., Nam, M. J., Paszynski, M., and Calo, V. M., 2008, Fourier series expansion in a non-orthogonal system of coordinates for the simulation of 3D alternating current borehole resistivity measurements: Computer Methods in Applied Mechanics and Engineering, 197, 3836–3849. doi:10.1016/j.cma.2008.03.007
  16. Pirson, S. J., 1963, Handbook of well log analysis for oil and gas formation evaluation: Prentice Hall Inc.
  17. Prudhomme, S., and Oden, J. T., 1999, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors: Computer Methods in Applied Mechanics and Engineering, 176, 313–331. doi:10.1016/S0045-7825(98)00343-0
  18. Tabarovsky, L. A., Goldman, M. M., Rabinovich, M. B., and Strack, K.-M., 1996, 2.5-D modeling in electromagnetic methods of geophysics: Journal of Applied Geophysics, 35, 261–284. doi:10.1016/0926-9851(96)00025-0
  19. Tamarchenko, T., and Druskin, V., 1993, Fast modeling of induction and resistivity logging in the model with mixed boundaries: 34th Ann. Log. Symp., Soc. Prof. Well Log Analysts, paper GG.
  20. Tamarchenko, T., Frenkel, M., and Mezzatesta, A., 1999, Three-dimensional modeling of resistivity devices. In M. Oristaglio, and B. Spies, (Eds), Three-dimensional electromagnetic, Soc. Expl. Geophys., 600–610.
  21. Tsang, L., Chan, A., and Gianzero, S., 1984, Solution of the fundamental problem of resistivity logging with a hybrid method: Geophysics, 40, 1596–1604.
  22. Zhang, L., Poulton, M. M., and Wang, T., 2002, Borehole electrical resistivity modeling using neural networks: Geophysics, 67, 1790–1797. doi:10.1190/1.1527079