• 제목/요약/키워드: Finite Field

검색결과 3,425건 처리시간 0.031초

FAST OPERATION METHOD IN GF$(2^n)$

  • Park, Il-Whan;Jung, Seok-Won;Kim, Hee-Jean;Lim, Jong-In
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.531-538
    • /
    • 1997
  • In this paper, we show how to construct an optimal normal basis over finite field of high degree and compare two methods for fast operations in some finite field $GF(2^n)$. The first method is to use an optimal normal basis of $GF(2^n)$ over $GF(2)$. In case of n = st where s and t are relatively primes, the second method which regards the finite field $GF(2^n)$ as an extension field of $GF(2^s)$ and $GF(2^t)$ is to use an optimal normal basis of $GF(2^t)$ over $GF(2)$. In section 4, we tabulate implementation result of two methods.

  • PDF

자왜재료를 이용한 선형 작동기의 유한요소 해석 (Finite Element Analysis of Magnetostrictive Linear Actuator)

  • 김윤창;김재환
    • 한국소음진동공학회논문집
    • /
    • 제17권4호
    • /
    • pp.356-362
    • /
    • 2007
  • Magnetostrictive materials have been used for linear actuators due to its large strain, large force output with moderate frequency band in the presence of magnetic field. However their performance analysis is difficult because of nonlinear material behaviors in terms of coupled strain-magnetic field dependence, nonlinear permeability, pre-stress dependence and hysteresis. This paper presents a finite element analysis technique for magnetostrictive linear actuator. To deal with coupled problems and nonlinear behaviors, a simple finite element approach is proposed, which is based on separate magnetic field calculation and displacement simulation. The finite element formulation and an in-house program development are illustrated, and a simulation model is made for a magnetostrictive linear actuator. The fabrication and performance test of the linear actuator are explained, and the performance comparison with simulation result is shown. Since this approach is simple, it can be applied for analyzing magnetostrictive underwater projectors and ultrasonic transducers.

Implementation of the modified compression field theory in a tangent stiffness-based finite element formulation

  • Aquino, Wilkins;Erdem, Ibrahim
    • Steel and Composite Structures
    • /
    • 제7권4호
    • /
    • pp.263-278
    • /
    • 2007
  • A finite element implementation of the modified compression field theory (MCFT) using a tangential formulation is presented in this work. Previous work reported on implementations of MCFT has concentrated mainly on secant formulations. This work describes details of the implementation of a modular algorithmic structure of a reinforced concrete constitutive model in nonlinear finite element schemes that use a Jacobian matrix in the solution of the nonlinear system of algebraic equations. The implementation was verified and validated using experimental and analytical data reported in the literature. The developed algorithm, which converges accurately and quickly, can be easily implemented in any finite element code.

PWM에 의한 속도 제어와 유연 구조를 고려한 컴퓨터 하드디스크 드라이브용 스핀들 모터의 기전 연성 유한 요소 해석 (Finite Element Analysis of Electromechanical Field of a Spindle Motor in a Computer Hard Disk Drive Considering Speed Control Using PWM and Mechanical Flexibility)

  • 장정환;장건희
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권9호
    • /
    • pp.499-508
    • /
    • 2002
  • This paper presents a finite element analysis of the electromechanical field in the spindle motor of a computer hard disk drive considering the speed control and mechanical flexibility. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation to obtain the nonlinear time-stepping finite element equation for the analysis of magnetic field. Magnetic force and torque are calculated by the Maxwell stress tensor. Mechanical motion of a rotor is determined by a time-stopping finite element method considering the flexibility of shaft, rotor and bearing. Both magnetic and mechanical finite element equations are combined in the closed loop to control the speed using PWM. Simulation results are verified by the experiments, and they are in food agreement with the experimental results.

ON CERTAIN BINOMIALS OVER A FINITE FIELD

  • PARK HONG GOO
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.679-684
    • /
    • 2005
  • In this paper, we characterize a permutation property of a certain type of binomials over the field through the use of Hermite's criterion.

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

최적정규기저를 갖는 유한체위에서의 저 복잡도 비트-병렬 곱셈기 (A Low Complexity Bit-Parallel Multiplier over Finite Fields with ONBs)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.409-416
    • /
    • 2014
  • 유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 최적 정규기저를 갖는 유한체의 H/W 구현이 가장 효율적이다. 타입 I 최적 정규기저를 갖는 유한체 $GF(2^m)$은 m 이 짝수이기 때문에 어떤 암호계에는 응용되지 못하는 단점이 있다. 그러나 타입 II 최적 정규기저를 갖는 유한체의 경우는 NIST에서 제안한 ECDSA 의 권장 커브가 주어진 $GF(2^{233})$이 타입 II 최적 정규 기저를 갖는 등 여러 응용분야에 적용 되므로, 이에 대한 효율적인 구현에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 타입 II 최적 정규기저를 갖는 유한체 $GF(2^m)$의 연산을 정규기저를 이용하여 표현하여 확대체 $GF(2^{2m})$의 원소로 표현하여 연산을 하는 새로운 비트-병렬 곱셈기를 제안하였으며, 기존의 가장 효율적인 곱셈기들보다 블록 구성방법이 용이하며, XOR gate 수가 적은 저 복잡도 곱셈기이다.

Vibration of elastic and viscoelastic multilayered spaces

  • Karasudhi, P.;Liu, Y.C.
    • Structural Engineering and Mechanics
    • /
    • 제1권1호
    • /
    • pp.103-118
    • /
    • 1993
  • The near field is discretized into finite elements, and the far field into infinite elements. Closed form far-field solutions to three fundamental problems are used as the shape functions of the infinite elements. Such infinite elements are capable of transmitting all surface and body waves. An efficient scheme to integrate numerically the stiffness and mass matrices of these elements in presented. Results agree closely with those obtained by others.

유한체상의 낮은 복잡도를 갖는 시스톨릭 몽고메리 곱셈 (Low Complexity Systolic Montgomery Multiplication over Finite Fields GF(2m))

  • 이건직
    • 디지털산업정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Galois field arithmetic is important in error correcting codes and public-key cryptography schemes. Hardware realization of these schemes requires an efficient implementation of Galois field arithmetic operations. Multiplication is the main finite field operation and designing efficient multiplier can clearly affect the performance of compute-intensive applications. Diverse algorithms and hardware architectures are presented in the literature for hardware realization of Galois field multiplication to acquire a reduction in time and area. This paper presents a low complexity semi-systolic multiplier to facilitate parallel processing by partitioning Montgomery modular multiplication (MMM) into two independent and identical units and two-level systolic computation scheme. Analytical results indicate that the proposed multiplier achieves lower area-time (AT) complexity compared to related multipliers. Moreover, the proposed method has regularity, concurrency, and modularity, and thus is well suited for VLSI implementation. It can be applied as a core circuit for multiplication and division/exponentiation.

1차 크리프 속도를 고려한 크리프 균열 진전의 유한요소 해석 (Finite Element Analysis of Creep Crack Growth Behavior Including Primary Creep Rate)

  • 최현창
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1120-1128
    • /
    • 1999
  • An elastic-viscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. In Cr-Mo steel stress fields obtained from the crack growth method by mesh translation were compared with both cases that the secondary creep rate is only used as creep material property and the primary creep rate is included. Analytical stress fields, Riedel-Rice(RR) field, Hart-Hui-Riedel(HR) field and Prime(named in here) field, and the results obtained by numerical method were evaluated in details. Time vs. stress at crack tip was showed and crack tip stress fields were plotted. These results were compared with analytical stress fields. There is no difference of stress distribution at remote region between the case of 1st creep rate+2nd creep rate and the case of 2nd creep rate only. In case of slow velocity of crack growth, the effect of 1st creep rate is larger than the one of fast crack growth rate. Stress fields at crack tip region we, in order, Prime field, HR field and RR field from crack tip.