• Title/Summary/Keyword: Finite Element Mode

Search Result 1,725, Processing Time 0.027 seconds

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

Efficient Calculation of a Step Discontinuity for Shielded-Microstrip using Vector Finite Element (VFEM) and Mode Matching Method

  • Kim, Young-Tae;Park, Jun-Seok;Kim, Hyeong-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.268-272
    • /
    • 2002
  • In this paper, we proposed a procedure to analyze a shielded-microstrip step discontinuity using the mode matching method (MMM) combined with the vector finite element method (VFEM), which is used to find the equivalent waveguide-model for a microstrip. In order to calculate the effective-widths and -dielectric permittivity of the equivalent waveguide-model corresponding shielded-microstrip, the propagation constant and characteristic impedance are calculated from the VFEM. MMM is then applied to find the scattering parameter in the planar waveguide. This technique makes it possible to take advantage of the high accuracy of the VFEM as well as the high efficiency of the MMM.

Efficient Calculation of a Step Discontinuity for Planar Transmission Line Using Vector Finite Element Method and Mode Matching Method (벡터유한요소법과 모드정합법을 이용한 불연속 구조를 갖는 평면형 선로의 효율적 계산)

  • Kim, Young-Tae;Kim, Chul-Soo;Park, Jun-Seok;Ahn, Dal;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1817-1819
    • /
    • 2001
  • For an efficient calculation of scattering matrix of planar transmission line with step discontinuity. Mode Matching Method combined with Vector Finite Element Method is adopted. Calculating effective widths are replaced with their respective equivalent planar waveguide corresponding to the microstrip width, Propagation Constant is calculated from the Vector finite element. Mode matching method is used for deriving scattering parameters.

  • PDF

A Study on the Vibration Characteristics of Weaving Machine Structure using Component Mode Synthesis (부분구조합성법을 이용한 제직기 구조물의 진도특성에 관한 연구)

  • 권상석;김병옥;전두환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.535-539
    • /
    • 2001
  • In these days. the finite element method(FEM) is a very common method for not only a simple vibration analysis but also the optimization of structures. Since the finite element model may contain thousands of degree of freedom, the eigensolutions require extreme computing power, which will result in a serious time-consuming problem. Thus, many researchers have challenged to find more improved modeling techniques and calculating methods to overcome such problems. The Guyan reduction method and the substructure synthesis method are typical examples of such methods. Of the substructure synthesis method, the component mode synthesis method (CMS) is widely used for dynamic analysis of structure. In this study. for the efficient analysis of jet loom structure. Component Mode Synthesis was carried out. The results of the finite element program developed are compared with those of the commercial package program ANSYS for the validation of the program. The results obtained by the program showed a good agreement with those of ANSYS. The program will be further refined and verified by test to yield more accurate results.

  • PDF

The Natural Frequency of a Coaxial Cylindrical Shell with Fluid Coupling (유체 연성이 작용하는 동축 원통형 쉘의 고유진동)

  • 안병준;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.975-979
    • /
    • 1994
  • The experimental and finite element studies of a coaxial cylindrical shell filled with liquid in the annular gap were performed to understand its vibration characteristics. Finite element analysis was achieved by using ANSYS code. Form the investigation of the changing trend of natural frequencies for the change of annular gap we know that the natural frequency of the coaxial cylindrical shell varies according to the mode shape. that is, in case of in-phase mode the natural frequency decrease as annular gap increase, but in case of out-of-phase mode the natural frequency increase. Finite element analysis results show the excellent agreement with the experimental results both in air and in water case, so that analysis on other cases with be possible without experiment.

  • PDF

Analysis and Fabrication of the Mode Conversion Type Ultrasonic Motor Using Finite Element Method (유한요소법을 이용한 모드변환형 초음파 모터의 해석 및 제작)

  • Lee, Jae-Hyung;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.23-26
    • /
    • 2003
  • An ultrasonic motor is a motor which uses vibration -a type of elastic vibration- to obtain a driving force, which then drives the motor using friction. In this paper, mode conversion type - single resonance mode ultrasonic rotary motor that use langevin type ultrasonic vibrator was studied. This model was proposed for the first time by Japanese Kumada in 1985. In this study, finite element analysis (FEA) of a stator and bidirectional driving characteristic of a rotor was newly obtained. The amplitude and phase of displacement and elliptical trajectory of beam was confirmed by FEA The fabricated motor was operated to clockwise and counterclockwise in 40.8 [kHz] and 44.2 [kHz] respectively. But bidirectional driving characteristics did not coincide each other.

  • PDF

Finite element analysis of piezoelectric structures incorporating shunt damping (압전 션트 감쇠된 구조물의 유한요소해석)

  • 김재환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.470-477
    • /
    • 2002
  • Possibility of passive piezoelectric damping based on a new shunting parameter estimation method is studied using finite element analysis. The adopted tuning method is based electrical impedance that is found at piezoelectric device and the optimal criterion for maximizing dissipated energy at the shunt circuit. Full three dimensional finite element model is used for piezoelectric devices with cantilever plate structure and shunt electronic circuit is taken into account in the model. Electrical impedance is calculated at the piezoelectric device, which represents the structural behavior in terms of electrical field, and equivalent electrical circuit parameters for the first mode are extracted using PRAP (Piezoelectric Resonance Analysis Program). After the shunt circuit is connected to the equivalent circuit for the first mode, the shunt parameters are optimally decided based on the maximizing dissipated energy criterion. Since this tuning method is based on electrical impedance calculated at piezoelectric device, multi-mode passive piezoelectric damping can be implemented for arbitrary shaped structures.

  • PDF

Buckling Characteristics of Skin-Stringer Composite Stiffened Panel

  • Noh, Ji-Sub;Ghim, Yeong-Taek;Shin, Joon-Hyung;Kwon, Bo-Seong;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.68-73
    • /
    • 2020
  • Skin-stringer structures are widely used in aircrafts due to their advantage of minimizing structural weight while maintaining load carrying capacity. However, buckling load can cause serious damage to these structures. Therefore, the buckling characteristics of skin-stringer structures should be carefully considered during the design phase to ensure structural soundness. In this study, finite element method was applied to predict the buckling characteristics of stiffened panels. In terms of the failure mode, finite element analysis showed a symmetrical buckling mode, whereas an asymmetrical mode was determined by experimentation. The numerical results were obtained and compared to the experimental data, showing a difference of 9.3% with regard to the buckling loads.

Combustion Instability Modeling in a Hydrogen-Natural Gas Mixed Fuel Gas Turbine Combustor using a 3-Dimensional Finite Element Method Approach (3차원 유한요소해석 기법을 사용한 수소-천연가스 혼소 가스터빈 연소기에서의 연소불안정 해석)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.36-41
    • /
    • 2022
  • In this study, the combustion instability characteristics according to the change in the hydrogen ratio in the fuel in the single nozzle system of the hydrogen-natural gas mixed gas turbine for power generation was analyzed using a three-dimensional finite element analysis-based Helmholtz solver. This combustor shows the instability characteristics in which mode transition occurs from a mode having a low amplitude near 70 Hz to a mode having a high amplitude of 250 Hz or higher as the hydrogen fraction in the fuel increases. The current modeling results are found to reasonably predict the main characteristics of the change in measured instability frequency and growth rate with the change in fuel composition.

Experimental and analytical study on prestressed concrete hollow slabs with asymmetric boundary conditions

  • Ma, Haiying;Lai, Minghui;Xia, Ye
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • Prestressed prefabricated hollow core concrete slabs with spans of 5 m and 10 m are commonly used since last century and still in service due to the advantage of construction convenience and durability. However, the end slabs are regularly subjected to cracks at the top and fail with brittleness due to the asymmetric boundary conditions. To better maintain such widely used type of hollow core slabs, the effect of asymmetric constraint in the end slabs are systematically studied through detailed nonlinear finite element analyses and experimental data. Experimental tests of slabs with four prestressed tendons and seven prestressed tendons with different boundary conditions were conducted. Results observe three failure modes of the slabs: the bending failure mode, shear and torsion failure mode, and transverse failure mode. Detailed nonlinear finite element models are developed to well match the failure modes and to reveal potential damage scenarios with asymmetric boundary conditions. Recommendations regarding ultimate capacity of the slabs with asymmetric boundary conditions are made to ensure a safe and rational design of prestressed concrete hollow slabs for short span bridges.