• Title/Summary/Keyword: Finite Element Impact Analysis

Search Result 785, Processing Time 0.025 seconds

Propagation of floor impact vibration in a 1:10 scale model of a test structure (1:10 축척 시험동 구조 모형의 바닥충격 진동 전달)

  • Lee, Pyoung-Jik;Yoo, Seung-Yup;Kim, Jae-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1455-1458
    • /
    • 2007
  • Vibration characteristics of concrete slabs were investigated using a 1:10 scale model and finite element method. A 1:10 scale model of a test building with 150 and 200mm slab thicknesses was made of acrylic materials. Modal test was conducted to investigate mode shape and modal frequencies. Results show that the mode shapes of two slabs with different thickness are similar each other, whereas natural frequency is different. Through modal analysis using FEM, it was revealed that both mode shapes and natural frequencies calculated from the FEM model are similar to those of the scale model measurement. It was also found that natural frequencies increased with increment of the slab thickness.

  • PDF

Development of Femoral Bone Model of Human Body for Simulation of Side Falls (측면낙상 시뮬레이션용 대퇴골 모델 개발에 관한 연구)

  • Park, Ji Su;Koo, Sang-Mo;Kim, Choong Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.956-961
    • /
    • 2014
  • Due to the increasing needs of anti-fall device for elderly, it is required to develop the test rigs for fall simulation. The femoral bone model consists of silicone and steel is used as an effective device to simulate falls. In this work, we propose five different femoral bone models and analyse them by using a commercial FEA tool. It has been shown that two kinds of simplified models exhibit the simulated side falls with an error range of ~1% in the impact load of femoral neck compared with full model. Especially, the upper tissue model is found to provide us with the best efficient test environment, attributable to its simple structure.

Development of the Functional Shoe Apparatus using FEM (유한요소법을 이용한 기능성 신발 구조체의 개발)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.89-95
    • /
    • 2013
  • This study focused on the development on functional shoe apparatus so that the appropriate impact can be applied to the feet in order to improve the density of mineral bone at lower limbs. The model with structure proposed in this study had an effective stress about 20 to 100% higher by comparing that of the model without it among most of 15 bone extraction points. Though there is a limitation that the finite element analysis data from the human body model are not the value of mineral bone densities by measuring directly but the effective bone stresses against impact, the proposed structure is designed to influence the increase of bone mass and improve the density of mineral bone by effecting the improvement of the density of mineral bone actually.

Modeling and Performance Evaluation of Multi-layer Composite Floor Plates with Holes (천공 다층 복합 바닥재의 모델링 및 성능평가)

  • Yoo, Hong Hee;Lee, Chang-Geun;Yoo, Hong-Geol;Joo, Young-Jun;Cho, Jung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.665-670
    • /
    • 2002
  • Pleasantness or quietness becomes one of the most important factors for residential designs recently. Especially for apartments, the noise generated by falling objects becomes a sensitive issue these days. To overcome the problem of the impact noise in apartments, the floor design has been changed. To reduce the transmissibility of the noise, composite floor structures are devised and implemented for the construction of apartments. In this paper, the noise reduction performance of a composite floor plate with holes is analyzed. Computational modelings for the structures are developed and its performance is evaluated by using the finite element method. The results show that the noise can be well reduced with the multi-layer composite floor plates with holes.

  • PDF

Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter (헬리콥터 휠타입 착륙장치 충돌특성 연구)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun;Cho, Yun-Mo;Chung, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

An Experimental Study on the Free Vibration of the Cantilever Composite Rectangular Plates with Point Supports (점지지된 복합재료 외팔 사각판의 자유진동에 관한 실험적 연구)

  • 이영신;최명환;류충현
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.623-631
    • /
    • 1998
  • The free vibration analyses of the isotropic and composite(CFRP, GFRP) rectangular plates with point supports at the free edge and middle position are performed. The natural frequencies and nodal patterns of plates with point supports are experimentally determined by impact testing using an impact hammer. To compare and verify these experimental results, the finite element analysis is also carried out. The effect of the point support position, the number of point supports, and the anisotropic parameters on the natural frequencies and nodal patterns of cantilevered rectangular plates are investigated.

  • PDF

Structural Evaluation on the Impact of a Radioisotope Package

  • Chung, Sung-Hwan;Lee, Heung-Young;Ku, Jeong-Hoe;Seo, Ki-Seog;Han, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.462-469
    • /
    • 1998
  • A package to transport high-level radioactive materials is required to withstand normal transport and hypothetical accident conditions pursuant to the IAEA and domestic regulations. The package should maintain the structural safety not to release radioactive material in any condition. The structural safety of the package has been evaluated by tests using proto-type or scaled-down models, however, the method by analysis is gradually utilized due to recent advancement of computers and computer codes. In this paper, to evaluate the structural safety of a radioisotope package of the KAERI, the three dimensional impact analyses under 9m free drop and 1m puncture were performed with an explicit finite-element code, the LS-DYNA3D code. The maximum stress intensity on each part was calculated and the structural safety of the package was evaluated in accordance with the regulations.

  • PDF

Use of bivariate gamma function to reconstruct dynamic behavior of laminated composite plates containing embedded delamination under impact loads

  • Lee, Sang-Youl;Jeon, Jong-Su
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study deals with a method based on the modified bivariate gamma function for reconstructions of dynamic behavior of delaminated composite plates subjected to impact loads. The proposed bivariate gamma function is associated with micro-genetic algorithms, which is capable of solving inverse problems to determine the stiffness reduction associated with delamination. From computing the unknown parameters, it is possible for the entire dynamic response data to develop a prediction model of the dynamic response through a regression analysis based on the measurement data. The validity of the proposed method was verified by comparing with results employing a higher-order finite element model. Parametric results revealed that the proposed method can reconstruct dynamic responses and the stiffness reduction of delaminated composite plates can be investigated for different measurements and loading locations.

Numerical Investigation into Behavior of Retaining Wall Subject to Cycles of Wetting and Drying (습윤-건조 반복작용에 노출되는 옹벽의 거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • This paper presents the results of a numerical investigation into the behavior of retaining wall subject to cycles of wetting and drying due to rainfall. The stress-pore pressure coupled finite element modeling strategy was first established for stimulating the wall behavior. A series of finite element analyses were then performed on a range of conditions including different rainfall and backfill conditions. The results indicated that the rainfall intensity was the primary influencing factor for the wall behavior. Also revealed was that the pre-rainfall condition determines the magnitudes and the distribution of matric suction which in fact has a significant impact on the behavior of wall during a major rainfall. This result demonstrates the importance of incorporating the pre-rainfall condition for numerical modeling of walls during heavy rainfall. Practical implications of the findings from this study are discussed in great detail.

Optimal Control of An Oscillating Body Using Finite Element Methods (유한요소법을 이용한 진동물체의 최적 제어에 관한 연구)

  • Park, Sung-Jin
    • Journal of Urban Science
    • /
    • v.7 no.1
    • /
    • pp.55-61
    • /
    • 2018
  • Long bridges, such as suspension bridges and diagonal bridges, are complex phenomena that show different behaviors depending on the shape and rigidity of the cross sections, such as wind vibrations and liquid vibrations from earthquakes in liquid storage containers. This is called the lower skirt on the lower side of the bridge, and the installation of lower skirt is effective for release and vortex vibrations caused by rapid winds, and that increases the stability of the wind resistance of the bridge. Optimal shape and installation of the lower skirt is also essential to make maximum wind speed effect of the lower skirt. Therefore, this study proposes a numerical analysis method to control the vibration of a bridge by calculating the optimal installation angle of an optimal lower skirt according to the optimal control theory and this study evaluates the impact on the optimal control system by minimizing the dominance equation with an evaluation function,which is an indicator for evaluating the optimal control theory state.