• 제목/요약/키워드: Finite Element (FE)

검색결과 1,859건 처리시간 0.024초

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

유한요소-전달강성계수법을 이용한 축대칭 원추형 셸의 구조해석 (Structural Analysis of Axisymmetric Conical Shells Using Finite Element-Transfer Stiffness Coefficient Method)

  • 최명수;변정환;여동준
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 2015
  • Various finite elements have been studied and developed to analyze a variety of structures in the finite element method(FEM). The transfer stiffness coefficient method(TSCM) is an effective algorithm for structural analysis but the structures which can be applied were limited. In this paper, a computational algorithm for the structural analysis of axisymmetric conical shells under axisymmetric loading is formulated using the finite element-transfer stiffness coefficient method(FE-TSCM). The basic concept of FE-TSCM is the combination of the modeling technique of FEM and the transfer technique of TSCM. The FE-TSCM has all the advantages of both FEM and TSCM. After carrying out the structural analysis of axisymmetric conical shells using FEM, FE-TSCM, and analytical method we compare the computational results of FE-TSCM with those of the other methods in terms of computational accuracy.

Concrete fragmentation modeling using coupled finite element - meshfree formulations

  • Wu, Youcai;Choi, Hyung-Jin;Crawford, John E.
    • Interaction and multiscale mechanics
    • /
    • 제6권2호
    • /
    • pp.173-195
    • /
    • 2013
  • Meshfree methods are known to have the capability to overcome the strict regularization requirements and numerical instabilities that encumber the finite element method (FEM) in large deformation problems. They are also more naturally suited for problems involving material perforation and fragmentation. To take advantage of the high efficiency of FEM and high accuracy of meshfree methods, a coupled finite element (FE) and reproducing kernel (RK, one of the meshfree approximations) formulation is described in this paper. The coupling of FE and RK approximation is implemented in an evolutionary fashion, where the extent and location of the evolution is dependent on a triggering criteria provided by the material constitutive laws. To enhance computational efficiency, Gauss quadrature is applied to integrate both FE and RK domains so that no state variable transfer is required when mesh conversion is performed. To control the hourglassing that might occur with 1-point integrated hexahedral grids, viscous type hourglass control is implemented. Meanwhile, the FEM version of the K&C concrete (KCC) model was modified to make it applicable in both FE and RK formulations. Results using this code and the KCC model are shown for the modeling of concrete responses under quasi-static, blast and impact loadings. These analyses demonstrate that fragmentation phenomena of the sort commonly observed under blast and impact loadings of concrete structures was able to be realistically captured by the coupled formulation.

유한 요소 해석을 활용한 공작기계 이송축 열적 특성 평가 (Evaluation of Thermal Characteristics for a Feeding Axis of Machine Tools Using Finite Element Analysis)

  • 이창훈;최진우
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.380-387
    • /
    • 2013
  • In this study, two finite element (FE) models were developed to evaluate the thermal characteristics of a feeding axis of a CNC lathe. One was used for analysis of heat transfer to identify the temperature distribution of the feeding axis and then, the other was used for analysis of thermal deformation to evaluate its structural behavior based on the temperature distribution. The FE models were based on the test standard for the axial thermal displacement. The feeding velocity was composed of three steps: the ascending, constant, and descending velocities. Therefore, the heat generation and convection coefficient were calculated for each velocity and applied to the thermal FE model. The convection coefficient for the ball screw rotation was based on an experimental equation. The result of the analytical thermal displacement was compared with that of the experimental displacement to verify the finite element models.

노치응력접근법을 이용한 차량구조재 용접이음부의 피로내구성 해석 (Analysis of Fatigue Durability on Seam Weldment using Notch Stress Approach)

  • 김민건;민태국
    • Journal of Welding and Joining
    • /
    • 제22권2호
    • /
    • pp.28-32
    • /
    • 2004
  • Fatigue life at seam weldment of thick plate was estimated using the finite element and FEM-FAT(an exclusive fatigue solver). Finite element meshing at toe and root of weldment was based oil Radaj's theory. Also, the results of FE analysis were compared with experimental results in the point of Miner's Rule. The results of FE and FEM-FAT analysis were in accord with experimental results within 60% confidence. This result reveals that above techniques is useful in assessment of seam weldment and to be an alternative method instead of an object experiment.

국부적 불연속을 가진 도파관의 고주파수 대역 파동 반사 및 투과 해석 기법 (A Numerical Method for Wave Reflection and Transmission Due to Local Non-Uniformities in Waveguides at High Frequencies)

  • 유정수
    • 한국음향학회지
    • /
    • 제29권5호
    • /
    • pp.314-324
    • /
    • 2010
  • 도파관 (waveguide structures)에 지지구조 또는 균열과 같은 국부적 불연속이 존재하는 경우, 도파관을 따라 전파되는 파동은 이러한 국부적 불연속으로 인해 반사가 발생한다. 빔과 같이 단면의 형상이 단순한 도파관에서는 국부적 불연속에 의한 저주파수 대역 반사 및 투과 특성을 스펙트럴요소(spectral element, SE)와 유한요소(finite element, FE)를 연결한 스펙트럴요소/유한요소법 (SE/FE method)으로 해석 할 수 있다. 그러나 도파관의 단면 형상이 복잡하거나 또는 고주파수 대역 해석에서는 빔 이론에 근거한 스펙트럴 요소를 이용하는 것이 부적합하다. 본 논문에서는 고주파수 대역 파동 반사 및 투과 특성 해석을 위해 스펙트럴요소 대신 스펙트럴수퍼요소 (spectral super element, SSE)를 도입하고, 이를 유한요소와 결합시킨 SSE/FE 방법을 제안한다. 이 방법은 도파관 모델링에 스펙트럴 수퍼요소를 이용하므로 레일과 같이 단면의 형상이 복잡한 도파관의 고주파수 대역 해석에 적합하다. 본 논문에서는 SSE/FE 해석에 필요한 반무한 SSE(semi-infinite spectral super element)에 대한 정식화를 먼저 수행하고, 이를 FE로 모델링한 국부적 불연속 구간과 연결하여 SSE/FE 모델을 구성하였다. 이 방법의 적용 예로써 단순 형상의 국부적 결함이 존재하는 철로 레일에 대하여 고주파수 대역 파동반사 및 투과계수를 계산하고 그 결과를 살펴보았다. 또한, 입사된 파워가 보존되어야 한다는 조건을 이용해 SSE/FE 방법의 수치오차를 추정하였다.

FE model updating method incorporating damping matrices for structural dynamic modifications

  • Arora, Vikas
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.261-274
    • /
    • 2014
  • An accurate finite element (FE) model of a structure is essential for predicting reliably its dynamic characteristics. Such a model is used to predict the effects of structural modifications for dynamic design of the structure. These modifications may be imposed by design alterations for operating reasons. Most of the model updating techniques neglect damping and so these updated models can't be used for accurate prediction of vibration amplitudes. This paper deals with the basic formulation of damped finite element model updating method and its use for structural dynamic modifications. In this damped damped finite element model updating method, damping matrices are updated along with mass and stiffness matrices. The damping matrices are updated by updating the damping coefficients. A case involving actual measured data for the case of F-shaped test structure, which resembles the skeleton of a drilling machine is used to evaluate the effectiveness of damped FE model updating method for accurate prediction of the vibration levels and thus its use for structural dynamic modifications. It can be concluded from the study that damped updated FE model updating can be used for structural dynamic modifications with confidence.

Computational finite element model updating tool for modal testing of structures

  • Sahin, Abdurrahman;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.229-248
    • /
    • 2014
  • In this paper, the development of a new optimization software for finite element model updating of engineering structures titled as FemUP is described. The program is used for computational FEM model updating of structures depending on modal testing results. This paper deals with the FE model updating procedure carried out in FemUP. The theoretical exposition on FE model updating and optimization techniques is presented. The related issues including the objective function, constraint function, different residuals and possible parameters for FE model updating are investigated. The issues of updating process adopted in FemUP are discussed. The ideas of optimization to be used in FE model updating application are explained. The algorithm of Sequential Quadratic Programming (SQP) is explored which will be used to solve the optimization problem. The possibilities of the program are demonstrated with a three dimensional steel frame model. As a result of this study, it can be said that SQP algorithm is very effective in model updating procedure.

Analysis of Traumatic Brain Injury Using a Finite Element Model

  • Suh Chang-Min;Kim Sung-Ho;Oh Sang-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1424-1431
    • /
    • 2005
  • In this study, head injury by impact force was evaluated by numerical analysis with 3-dimensional finite element (FE) model. Brain deformation by frontal head impact was analyzed to evaluate traumatic brain injury (TBI). The variations of head acceleration and intra-cranial pressure (ICP) during the impact were analyzed. Relative displacement between the skull and the brain due to head impact was investigated from this simulation. In addition, pathological severity was evaluated according to head injury criterion (HIC) from simulation with FE model. The analytic result of brain damage was accorded with that of the cadaver test performed by Nahum et al.(1977) and many medical reports. The main emphasis of this study is that our FE model was valid to simulate the traumatic brain injury by head impact and the variation of the HIC value was evaluated according to various impact conditions using the FE model.

타이어의 복합 이차원 유한 요소 모델 (Hybrid Two-Dimensional Finite Element Model of Tires)

  • 김용조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.62-67
    • /
    • 2002
  • It has been shown that the vibrational response of a tire can be represented by a set of decaying waves, each associated with a particular cross-sectional mode shape in the region near the contact patch. Thus, it can be concluded that tires can be effectively modeled as lossy waveguides. It has also been shown that the sound radiation from tires is mainly from the region close to the contact patch. In consequence, it may be computationally efficient to analyze tire vibration and sound radiation in the region close to the contact patch by using a hybrid finite element model in which the cross-section of a tire is approximated by 2-D finite elements while an analytical wave solution is assumed in the circumferential direction of the tire. In this article. a hybrid finite element was formulated based on a composite shell model. The dispersion relations for sample structures obtained by using the hybrid FE model were then compared with those obtained by using a full, three-dimensional FE model. It has been shown that the FE analysis made using the hybrid 2-D finite elements yields results in close agreement with the three-dimensional model.

  • PDF