• 제목/요약/키워드: Finite Difference Method(FDM)

Search Result 190, Processing Time 0.024 seconds

Two-dimensional Resistivity Modeling Using Boundary Elements Method (경계 요소법을 이용한 2차원 비저항 모델링)

  • 김형수
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.119-130
    • /
    • 1996
  • The theory and numerical technique using boundary elements method (BEM) are given to solve 2-dimensional resistivity problems. Potential distributions from homogeneous resistivity model and layered model are calculated by using BEM for a point source of current injection. The potential distributions of BEM are compared with those of finite difference method (FDM) and finite elements method (FEM). Among the three numerical methods to solve 2-dimensional resistivity problem, it is proved that BEM is more efficient tool than FDM and FEM in consideration of computing storage and time as weU as the accuracy of solutions.

  • PDF

Stability analysis of high-temperature superconductor(Au/YBCO) film using one-dimensional FDM (1차원 FDM을 이용한 고온 초전도체(Au/YBCO) 박막의 안정성 해석)

  • 김진석;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.27-30
    • /
    • 2002
  • One dimensional conduction equation is solved by finite difference method, to analyse the stability of Au/YBCO film deposited on a sapphire substrate. Joule heat is included in the case of current sharing state. The analysis shows the quench and recovery of superconductor depending on the amount of thermal disturbance release on the center surface of superconductor. The critical disturbance energies for different filling factor and operating current are calculated.

A Comparative Study on Application of FAM and FDM to Small Rectangular Basin Circulation (소규모 사각형 박지순환에 대한 유한해석법과 유한차분법의 비교연구)

  • Choi, Song Yeol;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1341-1348
    • /
    • 1994
  • This is a comparative study on applications of finite analytic method (FAM) and finite difference method (FDM) to rectangular smalI basin circulation. To do such a comparison, the circulation model in small rectangular basin is established using FAM and the nurmerical solution from the FAM model is compared with that from the FDM model. As the grid size approaches Von Neumann stablity condition, the convergence time to steady state increases in Askren's model, but does not increase in finite analytic model. Especially in the FAM model, the numerical solution converges stably even in the grid size range beyond the stablity condition whereas that diverges in the FDM model. In the case of large basin Reynolds number, it is found that steady state solution is obtained in the FAM model with smaller calculating steps than those of in the FDM model.

  • PDF

Application of Convolutional Perfectly Matched Layer Method to Numerical Elastic Modeling Using Rotated Staggered Grid (회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용)

  • Cho, Chang-Soo;Lee, Hee-Il
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.183-191
    • /
    • 2009
  • Finite difference method using not general SSG (standard staggered grid) but RSG (rotated staggered grid) was applied to simulation of elastic wave propagation. Special free surface boundary condition such as imaging method is needed in finite difference method using SSG in elastic wave propagation. But free surface boundary condition in finite difference method using RSG is easily solved with adding air layer or vacuum layer. Recently PML (Perfectly Matched layer) is widely used to eliminate artificial reflection waves from finite boundary because of its' greate efficiency. Absorbing ability of CPML (convolutional Perfectly Matched Layer) that is more efficient than that of PML and CPML that don't use splitting of wave equation that should be adapted to PML was applied to FDM using RSG in this study. Frequency absorbing characteristic and energy absorbing ability in CPML layer were investigated and CPML eliminated artificial boundary waves very effectively in FDM using RSG in being compared with that of Cerjan's absorbing method. CPML method also diminished amplitude of waves in boundary layer of solid-liquid model very well.

Analysis of Automobile Fluid Flow Field Using FDM Method (유한차분법을 이용한 자동차 유동장 해석)

  • Kim, Myun-Hee;Lee, Tae-Young;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • When Automobile runs high velocity, it causes sleepy velocity profile then that generates lift force and drag force. Lift force reduce tire friction force. Drag force increase consumed power. For improve automobile performance, reduction of Lift force and Drag force was seriously considered. It measured experimently using wind tunnel, numerically using numerical analysis. Finite difference method is using difference equation and simplifed mesh. This method require less calculation time and computer power than other method.

  • PDF

Development of Three Dimensional Chloride Ion Penetration Model Based on Finite Element Method (유한요소법을 이용한 3차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.43-49
    • /
    • 2015
  • Most of agricultural structures located in seashore could not avoid rapid deterioration of concrete because chloride-ion and $CO_2$ gradually penetrate into concrete. However, since most of models can be able to describe the phenomenon of penetration by using one or two dimensional models based on finite difference method (FDM), those modes can not simulate the real geometry and it takes a lot of computational time to complete even the calculation. To overcome those weaknesses, three dimensional numerical model considering time dependent variables such as surface concentration of chloride and diffusion coefficient of domain based on finite element method (FEM) was suggested. This model also included the neutralization occurred by the penetration of $CO_2$. Because the model used various sizes of tetrahedral mesh instead of equivalent rectangular mesh, it reduced the computational time to compare with FDM. As this model is based on FEM, it will be easily extended to execute multi-physics simulation including water evaporation and temperature change of concrete.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part II : Parametric Study (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part II: 매개변수 해석)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.496-507
    • /
    • 2020
  • A prediction of the performance of EPB TBM is significant for improving the constructability of tunnels. Thus, various attempts to simulate TBM excavation by the numerical method have been made until these days. In this paper, to evaluate the performance of TBM with different operating conditions, a parametric study was carried out using coupled discrete element method (DEM) and finite difference method (FDM) EPB TBM driving model. The analysis was conducted by changing the penetration rate (0.5 and 1.0 mm/sec) and the rotational speed of screw conveyor (5, 15, and 25 rpm) while the rotation velocity of the cutter head kept constant at 2 rpm. The torque, thrust force, chamber pressure, and discharging with different TBM operating conditions were compared. The result of parametric study shows that the optimum driving condition can be determined by the coupled DEM-FDM numerical model.

Simulation of Elastic Wave Propagation in Anisotropic Materials (이방성 재료에서의 탄성파 전파 과정에 대한 시뮬레이션)

  • Kim, Young-H.;Lee, Seung-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.227-236
    • /
    • 1997
  • Quantitative analysis and imaging of elastic wave propagation are very important for the materials evaluation as well as flaw detection. The elastic wave propagation in an anisotropic media is more complex, and analysis and imaging become essential for flaw detection and materials evaluation. In the anisotropic media, the wave velocity is dependent on the propagation direction. In addition, the direction of group velocity is different from that of phase velocity, the direction of energy flow is not same as the propagation direction of wavefront (beam skewing effect). Especially, this effect becomes critical for the large anisotropic media such as fiber composite materials, and the results using elastic waves for those materials have to be analyzed considering the wave propagation mechanism. Since the analytical approach for the wave propagation in the anisotropic materials is limited, the numerical analysis such as finite difference method (FDM) have been used for these case. Therefore, 2-dimensional FDM program for the elastic wave propagation is developed, and wave propagation in anisotropic media are simulated.

  • PDF

Characteristic of Thermal Output of Thermally Activated Building System During the Heating Operation According to FDM Analysis (FDM 해석에 의한 구체축열시스템(TABS)의 난방운전시 방열 특성 분석)

  • Lim, Jae-Han;Song, Jin-Hee;Koo, Bo-Kyoung;Song, Seung-Yeong;Senog, Yoon-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • This study is focused on the evaluation of thermal output of TABS (Thermally Activated Building System). The aim of this study is to evaluate TABS in terms of the temperature difference between heating medium supply temperature ($T_s$) and return temperature ($T_r$), thermal output and the surface temperature distribution according to the design flow rate and the design flow temperature. Through the transient heat transfer simulation using temperature calculation using Crank-Nicolson FDM using Physibel Voltra 6.0 W, the temperature difference between $T_s$ and ��$T_r$, thermal output and the surface temperature distribution of specific TABS was calculated and evaluated. The results show that specific thermal output and temperature difference at $60^{\circ}C$ of supply water temperature were about 162 $W/m^2$, $13.6^{\circ}C$ respectively.

Prediction of Freezing Time for Peeled Chestnut using Finite Difference Method (유한차분법을 이용한 깐밤의 동결시간 예측)

  • Lee, Choong-Ho;Kim, Jong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.21-29
    • /
    • 2008
  • In this study, the thermal properties of peeled chestnuts were measured, and the mathematical prediction model of freezing time was also developed for various interior positions from center to rind (surface). The measured thermal properties were showed that heat conductivity is $0.43W/m^{\circ}C$, specific heat is $2.7206J/m^3^{\circ}C$, latent heat is $216.9{\times}10^6J/m^3$ and freezing point is $-2.8^{\circ}C$. The entire process about reaching to the freezing time of peeled chestnuts was analyzed with its each regular depth position using the finite difference method (FDM) based on computer simulation. In case of regular freezing temperature, it was showed an that surface (rind) position is more rapidly reached into the freezing point rather than the center position, and also reaching time to the freezing point is more fast at the lower freezing temperature. Comparison results between simulation and experiments showed linear relationship. In regularly varying condition for freezing temperature, this method would give an information to predict a freezing time of the interior points for peeled chestnuts and more similar agricultural products.