• Title/Summary/Keyword: Finite Difference Method(FDM)

Search Result 190, Processing Time 0.031 seconds

Effect of tapered-end shape of FRP sheets on stress concentration in strengthened beams under thermal load

  • El Mahi, Benaoumeur;Kouider Halim, Benrahou;Sofiane, Amziane;Khalil, Belakhdar;Abdelouahed, Tounsi;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.601-621
    • /
    • 2014
  • Repairing and strengthening structural members by bonding composite materials have received a considerable attention in recent years. The major problem when using bonded FRP or steel plates to strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which lead to premature failure of the structure. As a result, many researchers have developed several analytical methods to predict the interface performance of bonded repairs under various types of loading. In this paper, a numerical solution using finite - difference method (FDM) is used to calculate the interfacial stress distribution in beams strengthened with FRP plate having a tapered ends under thermal loading. Different thinning profiles are investigated since the later can significantly reduce the stress concentration. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both beam and bonded plate. The shear correction factor for I-section beams is also included in the solution. Numerical results from the present analysis are presented to demonstrate the advantages of use the tapers in design of strengthened beams.

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

A Study on the Analysis of Electromagnetic Characteristics and Design of a Cylindrical Photonic Crystal Waveguide with a Low-Index Core (중심-동공을 갖는 원통형태 광결정 도파로의 전자장 특성 분석 및 설계 연구)

  • Kim, Jeong I.
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, a cylindrical photonic crystal waveguide with a low-index core is first proposed. The core can be filled with air, liquid, or arbitrary dielectric materials. Exact analyses for the electromagnetic field characteristics of guided modes, by using appropriate Bessel functions and applying the boundary conditions, are performed to find out the guiding characteristics of the proposed waveguide. For verification and usage in design and manufacturing process, the computer-calculation of the waveguide transmission characteristics is also performed by applying the rigorous full-vectorial finite difference method. Providing variations of the effective area for the fundamental mode of the designed waveguide with different numbers of cladding layers, ranging from 2.6056 ㎛2 to 5.9673 ㎛2 over the operation wavelength, generally as the core refractive index n1 is higher, the mode area becomes smaller and the result leads to more optimistic effect for nonlinear device applications.

The Study of Sediment Volume Concentration in Liquefied-Layer of Debris Flow (토석류 유동층에서 토사체적 농도 특성에 관한 연구)

  • Kim, Sungduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.109-115
    • /
    • 2014
  • The purpose of this study is to estimate the sediment volume concentration of the liquified-solid mixture which is included fine sediment fractions, according to the variance of the channel slope and the water supply. The numerical model was performed by using the Finite Differential Element Method (FDM) based on the equation for the mass conservation, momentum conservation and the equation of coarse sediment an fine sediment. In comparison of varying the channel slope, the deeper the channel slope, the inflection point of the sediment concentration was occurred rapidly. In comparison of variance of the water supply, as the water supply increases fluctuation with high sediment concentration. In this situation, debris flow changes to the turbulent flow and the sediment becomes to be floated. In comparison varying the length paved saturated sediment, the longer the length, the high concentration of sediment occurred, for the safety of the slope it is needed to check the possibility of the erosion in the slope by debris flow. The results of this study will provide useful information in predicting of the disaster by the liquified-solid mixture and in prevention of the debris flow with various the slope in the mountain side.

The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam (사방댐 위치변화에 따른 토석류의 충격력 해석에 관한 연구)

  • Kim, Sung-Duk;Lee, Ho-Jin;Chang, Hyung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.409-418
    • /
    • 2019
  • Debris flows occur in mountainous areas due to heavy rains resulting from climate change and result in disasters in the downstream area. The purpose of this study is to estimate the impact force of a debris flow when a check dam according is installed in various locations in the channel of a highly mountainous area. A Finite Differential Element Method (FDM) model was used to simulate the erosion and deposition based on the equation for the mass conservation and momentum conservation while considering the continuity of the fluid. The peak impact force from the debris flow occurred at 0 to 5 sec and 15 to 20 sec. When the supplied water discharge was increased, greater peak impact force was generated at 16 to 19 sec. This means that when increasing the water supply, the velocity of the debris flow became faster, which results in increased energy of the consolidation between the particles of the water and the sediment made. If a number of check dams were to be set up, it would be necessary to investigate the impact force at each location of the check dam. The results of this study could provide useful information in predicting the impact force of the debris flow and in installing the check dams in appropriate locations.

A Study on Shape Optimum Design for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상최적설계)

  • Yang, Wook-Jin;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • This paper addresses a method for shape optimization of a continuous elastic body considering stability, i.e., buckling behavior. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Unlike the conventional finite difference method (FDM), this method is efficient in that only a couple of analyses are required regardless of the number of design parameters. Commercial software such as ANSYS can be employed since the method requires only the result of the analysis in computation of the sensitivity. Though the buckling problem is more efficiently solved by structural elements such as a beam and shell, elastic solids have been chosen for the buckling analysis because solid elements can generally be used for any kind of structure whether it is thick or thin. Sensitivity is then computed by using the mathematical package MATLAB with the initial stress and buckling analysis of ANSYS. Several problems we chosen in order to illustrate the efficiency of the presented method. They are applied to the shape optimization problems to minimize weight under allowed critical loads and to maximize critical loads under same volume.

Numerical Simulation for Behavior of Debris Flow according to the Variances of Slope Angle (비탈면 경사 변화에 따른 토석류 거동의 수치모의)

  • Kim, Sungduk;Yoon, Ilro;Oh, Sewook;Lee, Hojin;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.59-66
    • /
    • 2012
  • The purpose of this study is to estimate the behavior and the mechanism of debris flow on the slope, which has specially various gradient plane. The numerical simulation was performed by using the Finite Differential Element method (FDM) based on the equation for the mass conservation and momentum conservation. The mechanism of flow type for debris flow is divided into three flow types which are stony debris flow, immature debris flow, and turbulent water flow, respectively. First, flow discharge, water flow depth, sediment volume concentration was investigated by variable input of flow discharge at the straight slope angle and two step inclined plane. As the input of flow discharge was decrease, flow discharge and water flow depth was increased, after the first coming debris flow only reached at the downstream. As the input of flow discharge was increased, the curve of flow discharge and flow depth was highly fluctuated. As the results of RMS ratio, the flow discharge and flow depth was lower two step slope angle than the straight slope angle. Second, the behavior of debris flow was investigated by the four cases of gradient degree at the downstream of slope angle. The band width of flow discharge and flow depth for $14^{\circ}$ between $16^{\circ}$ was higher than other gradient degree, and fluctuation curve was continuously high after 10 seconds.

Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis (지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정)

  • Kubota, Ryuji;Nishiyama, Eiichiro;Murase, Kei;Kasahara, Junzo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

Onset of Natural Convection in Transient Hot Wire Device for Measuring Thermal Conductivity of Nanofluids (비정상열선법을 이용한 나노유체 열전도도 측정 시 자연대류 개시점에 대한 연구)

  • Lee, Seung-Hyun;Kim, Hyun-Jin;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.279-285
    • /
    • 2011
  • We perform a numerical study to determine the time of onset of natural convection in a transient hot wire (THW) device for measuring the thermal conductivity of nanofluids. The samples used in this simulation are water-based $Al_2O_3$ nanofluids with volume fractions of 1%, 4%, and 10%, and the properties are calculated by theoretical models and experimental correlations. The THW apparatus using coated wire is modeled by the control-volume-based finite difference method, and the start of natural convection is determined by observing the temperature rise of the wire under a gravity field. The onset time is 11.5 s for water and 41.6 s for water-based $Al_2O_3$ nanofluids predicted by Maxwell thermal conductivity model with a 10% volume fraction. We confirm that the onset time of natural convection of nanofluids in the cylinder increases with the nanoparticle volume fraction. We suggest a correlation for predicting the onset time on the basis of the numerical results. Finally, it is shown that the measurement error due to natural convection is negligible if the measurement using the transient hot wire method is completed before the onset of natural convection in the base fluid.

Characteristics of 1D-Consolidation for Soft Clay Ground Based on a Elasto-Viscous Model (탄-점성 이론에 의한 점성토 지반의 1차원 압밀특성)

  • Baek, Won-Jin;Ha, Sung-Ho;Lee, Kang-Il;Kim, Jin-Young;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.49-58
    • /
    • 2010
  • In this study, in order to investigate the characteristics of secondary consolidation in the soft clay ground, oedometer tests were carried out in a normally consolidated condition, and the consolidation characteristics of the soft clay ground were examined by the Finite Difference Method (FDM) based on the Elasto-Viscous model proposed by Yoshikuni. The consolidation tests adjusted the consolidation load increment ratio(${\Delta}p/p_0$) to 1.0 for the four cases with initial consolidation pressures of 0.8, 1.6, 3.2, and 6.4 kgf/$cm^2$. The long-term consolidation tests were examined by the tests that changed the load increment ratio to clarify the effect of consolidation load increment. Although the numerical analysis was delayed in the primary consolidation process, from the result of the numerical analysis of the laboratory tests, the applicability of the Elasto-Viscous model was verified from the agreement of the secondary consolidation process. Based on the developing of model ground consist of general soft clay, influences of consoliation parameters on the consolidation characteristics were studied by the numerical analysis.