• 제목/요약/키워드: Finite Difference Formulation

검색결과 133건 처리시간 0.021초

핵비등에서의 기포거동에 관한 수치해석 (Numerical Simulation of Bubble Motion During Nucleate Boiling)

    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.389-396
    • /
    • 2001
  • Direct numerical simulation of bubble growth and merger process on a single nucleation site during partial nucleate boiling is performed. The equations governing conservation of mass, momentum and energy are solved using a finite difference method combined with a level set method for capturing the vapor-liquid interface. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall. Also, a simplified formulation for predicting the evaporative heat flux in a thin liquid micro-layer is developed and incorporated into the level set formulation. Based on the numerical results, the bubble growth and merger pattern and its effect on the heat transfer are discussed.

Markov 연쇄 MCM을 이용한 마이크로 흐름센서 열전달 해석 (Thermal Transfer Analysis of Micro Flow Sensor using by Markov Chain MCM)

  • 차경환;김태용
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2253-2258
    • /
    • 2008
  • 산화물 반도체 감지막이 동작온도에 따라 감응특성을 가지는 마이크로 흐름센서를 설계하기 위해서 통계적 수법에 기초한 Markov 체인 MCM을 이용하여 기초방정식을 정식화하고 마이크로 소자의 열 전달특성을 해석하였다. 계산 결과를 통하여 기존 유한차분법이 가지는 계산 정밀도와 차이가 없음을 확인하였다. 본 논문에서 제안한 Markov 체인 MCM을 활용하면 다양한 마이크로 소자의 열전달 특성과 같은 물리적 특성을 해석하고 설계하는데 유용할 것으로 판단된다.

항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석 (Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena)

  • 박주배;권태헌
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1465-1477
    • /
    • 1993
  • 본 연구에서는 분말혼합체의 특성인 항복응력을 포함한 Generalized Newtonian Fluid의 구성 방정식을 도입하고 미끄럼현상을 고려한 신소재의 사출성형 충전과정 해석용 CAE(computer aided engineering)시스템을 개발하였다. 수치모사를 위한 수치해석방법으로는, 유한요소법(finite element method)과 유한차분법(finite difference method)을 함께 사용하였다. 유한요소법과 검사체적법(control volume technique) 을 병용하여 유동의 진행을 수치모사 하였으며, 유한차분법을 사용하여 온도분포를 계산하였다.

Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.483-492
    • /
    • 2019
  • In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection (residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep (half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 formulation estimated the $P_{cr}$ load conservatively. The high difference from the EC-3 formulation was predicted to directly originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length ($L_r$). Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to properly estimate the geometric imperfection influence on the $P_{cr}$ load. Sweep and sweep-twist imperfections led to 10% and 15% decrease in the $P_{cr}$ load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of doubly-symmetric steel I-beams.

굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending)

  • 심현보;양동열
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.

FDM에 의한 응고해석시 계산시간 단축을 위한 음적해법의 적용과 잠열처리방법 (Reduction of Computing Time through FDM using Implicit Method and Latent Heat Treatment in Solidification Analysis)

  • 김태규;최정길;홍준표;이진형
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.323-332
    • /
    • 1993
  • An implicit finite difference formulation with three methods of latent heat treatment, such as equivalent specific heat method, temperature recovery method and enthalpy method, was applied to solidification analysis. The Neumann problem was solved to compare the numerical results with the exact solution. The implicit solutions with the equivalent specific heat method and the temperature recovery method were comparatively consistent with the Neumann exact solution for smaller time steps, but its error increased with increasing time step, especially in predicting the solidification beginning time. Although the computing time to solve energy equation using temperature recovery method was shorter than using enthalpy method, the method of releasing latent heat is not realistic and causes error. The implicit formulation of phase change problem requires enthalpy method to treat the release of latent heat reasonably. We have modified the enthalpy formulation in such a way that the enthalpy gradient term is not needed, and as a result of this modification, the computation stability and the computing time were improved.

  • PDF

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

FDTD법을 이용하여 분산매질을 고려하기 위한 PLRC-APML 기법 (A Dispersive APML using Piecewise Linear Recursive Convolution for FDTD Method)

  • 이정엽;이정해;강노원;정현교
    • 한국전자파학회논문지
    • /
    • 제15권10호
    • /
    • pp.977-982
    • /
    • 2004
  • 본 논문에서는 유한 시간 차분법(FDTD) 내에서 PLRC(Piecewise Linear Recursive Convolution)법을 이용한 분산성 물질에 대한 비등방성 흡수체(APML)를 제안한다. 제안된 흡수체는 비선형, 분산성 매질 해석시 무한 경계조건을 표현하기 위해 사용될 수 있다. 제안된 흡수체는 기존의 APML 정식화 과정에서 분산 특성을 고려한 것이며 PLRC법의 장점인 빠른 계산시간, 저 메모리 사용, 다극 감수율의 간편한 정식화 등의 장점을 가지고 있다. 개발된 분산성 APML은 드바이(Debye)매질과 로렌츠(Lorentz) 매질 등의 분산성 물질의 해석에 적용하였으며 수치실험을 통해 흡수경계에서 뛰어난 흡수율을 가짐을 보였다.

정식화를 이용한 3차원 구조물의 형상 최적설계 (Variational Formulation for Shape Optimization of Spatial Beam Structures)

  • 최주호;김종수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF

차음성능 측정시 터널링 효과에 관한 연구 (A Study on Tunneling Effect in Sound Transmission Loss Measurement)

  • Kim, Bong-Ki;Kim, Jae-Seung;Kim, Hyun-Sil;Kang, Hyun-Ju;Kim, Sang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권1E호
    • /
    • pp.24-30
    • /
    • 2004
  • This study is aimed to evaluate a tunneling effect in the laboratory measurement of sound transmission loss. Based on the formulation for sound transmission loss of a finite panel in the presence of tunnel, variations of the sound transmission loss with the parameters of panel location and tunnel depth are investigated. In comparison with the transmission loss of a finite plate in an infinite rigid baffle, the maximum difference occurs in the laboratory measurement when the panel is placed at the center of the tunnel, while a better estimation of true transmission loss is obtained when the panel is located at either end.