Browse > Article

A Dispersive APML using Piecewise Linear Recursive Convolution for FDTD Method  

Lee Jung-Yub (School of Electrical Engineering, Seoul National University)
Lee Jeong-Hae (Department of Radio Science & Communication Engineering, Hongik University)
Kang No-Weon (Korea Research Institute of Standards and Science)
Jung Hyun-Kyo (School of Electrical Engineering, Seoul National University)
Publication Information
Abstract
In this paper, a dispersive anisotropic perfectly matched layer(APML) is proposed using piecewise linear recursive convolution(PLRC) for finite difference time domain(FDTD) methods. This proposed APML can be utilized for the analysis of a nonlinear dispersive medium as absorbing boundary condition(ABC). The formulation is simple modification to the original AMPL and can be easily implemented. Also it has some advantages of the PLRC approach-fast speed, low memory cost, and easy formulation of multiple pole susceptibility. We applied this APML to 2-D propagation problems in dispersive media such as Debye and Lorentz media The results showed good absorption at boundaries.
Keywords
Absorbing Boundary Condition(ABC); Finite Difference Time Domain(FDTD); Piecewise Linear Recursive Convolution(PLRC); Anisotropic Perfectly Matched Layer(APML);
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. S. Vee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media', IEEE Trans. Antennas Propagat, vol. AP-14, pp. 302-307, May 1966
2 J. P. Berenger, 'A perfectly matched layer for the absorption of electromagnetic waves', J Computat. Phys., vol. 114, pp. 185-200, Oct. 1994   DOI   ScienceOn
3 D. F. Kelly, R 1. Luebbers, 'Piecewise linear recursive convolution for dispersive media using FDTD', IEEE Trans. Antenna and Propagat, vol. 44, pp. 792-797, Jun. 1996   DOI   ScienceOn
4 R. J. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler and M. Schneider, 'A frequency-dependent finite-difference time-domain formulation for dispersive materials', IEEE Trans. Electromagn. Compat, vol. 32, pp. 222-227, Aug. 1990   DOI   ScienceOn
5 A. Taflove, S. C. Hagness, Computational Electro-dynamics: The Finite Difference Time Domain Method, 2nd ed. Norwood, MA: Arthch House, 2000
6 F. L. Teixeira, W. C. Chew, M. Straka, M. L. Oristaglio and T. Wang, 'Finite-difference timedomain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils', IEEE Trans. Geosci. Remote Sensing, vol. 36, no. 6, pp. 1928-1937, Nov. 1998   DOI   ScienceOn
7 S. D. Gedney, 'An anisotorpic perfectly matched layer absorbing media for the truncation of FDTD lattices', IEEE Trans. Antennas Propagat., vol. 44, pp. 1630-169, Dec. 1996   DOI   ScienceOn
8 J. A. Roden, S. D. Gedney, 'Convolution PML(CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media', Microwave Opt. Technol. Lett., vol. 27, pp. 334-339, Dec. 2000   DOI   ScienceOn
9 M Fujii, P. Russer, 'A nonlinear and dispersive APML ABC for the FD-TD Methods', IEEE Microwave and Wireless Compo Lett, vol. 12, no. 11, pp. 444-446, Nov. 2002   DOI   ScienceOn