• Title/Summary/Keyword: Finite Element Analysis Force

Search Result 1,994, Processing Time 0.032 seconds

Static Stiffness Characteristics of Main Spindle Interface using Finite Element Method (유한요소법을 이용한 주축 인터페이스부의 정강성 특성)

  • Hwang, Young-Kug;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems such as the run-out errors and reduced stiffness must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an analysis of static stiffness in the main spindle interface. Finite element analysis is performed by using a commercial code ANSYS according to variation of cutting force, clamping force and rotational speed. From the finite element results, it is shown that the rotational speed and clamping force mostly influence on the variation of the static stiffness in the main spindle interface.

The 3-Dimensional Finite Element Analysis of Minimum Implant Structure for Edentulous Jaw (무치악에 대한 최소 임플란트의 구조물의 3차원 유한요소 해석)

  • Jang, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • The aim of the study is to interpret the distribution of occlusal force by 3-dimensional finite element analysis of ISP(Implant Supported Prosthesis) supported by minimum number of implant to restore the edentulous patients. For this study, the Astra Tech implant system is used. Geometric modeling for 6 and 4 fixture ISP group is performed with respect to the bone, implant and one piece superstructure, respectively. Implants are arbitrarily placed according to the anatomical limit of lower jaw and for the favorable distribution of occlusal force, which is applied at the end of cantilever extension of ISP with 30mm. Element type is tetrahedral for finite element model and the typical mechanical properties, Young's modulus and Poisson's ratio of each material, cortical, cancellous bone and implant material are utilized for the finite element analysis. From this study, we can see the distribution of equivalent stress equal to real situation and speculate the difference in the stress distribution in the whole model and at each implant fixture, From the analysis, the area of maximum stress is distributed on distal contact area between bone and fixture in the crestal bone. The maximum stress is 53MPa at the 0.2mm area from the bone-implant interface in the maximum side for 300N load condition for 4 fixture case, which is slightly less than the stress calculated from allowable strain. This stress has not been deduced to directly cause the loss of crestal bone around implant fixture, but the stress can be much reduced as the old peoples may have lower chewing force. Thus, clinical trial may be performed with this treatment protocol to use 4 fixtured ISP for old patients.

Performance Evaluation and Sensitivity Analysis of the Pantograph for the High-Speed Train Using Finite Element Analysis Method (유한요소해석 기법을 이용한 고속철도용 판토그래프 집전성능 평가 및 민감도 분석)

  • Lee, Jin-Hee;Paik, Jin-Sung;Kim, Young-Guk;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1874-1880
    • /
    • 2011
  • In this paper, sensitivity analysis of the pantograph for the high-speed Train was conducted using finite element analysis method. Dynamic interaction of catenary-pantograph model was simulated by using a commercial finite element analysis software, SAMCEF. Pantograph was assumed to be three degree of freedom mass-spring-damper model and the pre-sag of the contact and messenger wire was implemented due to gravity. The span data of the actual high-speed line and specification of pantograph for high-speed train was applied in the analysis model, respectively. The reliability of the simulation model is verified by comparing the contact force results of simulation and test. Through the simulation, mean contact force and its deviation was evaluated and then sensitivity of the pantograph was analyzed.

  • PDF

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

3D Finite Element Analysis of Skew and Overhang Effects of Permanent Magnet Linear Synchronous Motor (PMLSM의 Skew 와 Overhang 효과에 대한 3D 유한 요소 해석)

  • Lee, Dong-Yeup;Hwang, In-Cheol;Kang, Gyu-Hong;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.505-510
    • /
    • 2006
  • This paper deals with skew and overhang effects of permanent magnet linear synchronous motor(PMLSM). The detent force and thrust characteristics considering skew and overhang effects of permanent magnet are analyzed by 3D finite element method and the results are compared to experimental values. As skew and overhang are applied to permanent magnet, the thrust is almost the same value but the detent force is reduced remarkably. By harmonic analysis, the distortion ratio of thrust is remarkably reduced from 4.29[%] to 2.3[%]. and, the ripple ratio of thrust is decreased from 8.2[%] to 3.56[%] at the same time. But, the lateral force which operate as the perpendicular direction of skew direction is generated. The lateral force and normal force acts by braking force between mover and LM-guide.

Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force (전자기력을 이용한 박판 성형공정의 해석적 연구)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

Evaluzation of Model equation Predicting Roll Force and Roll Power during Hot Rolling (열간압연중 압연하중 및 압연동력 예측 모델)

  • 곽우진;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.308-312
    • /
    • 1999
  • Developed the model equations which calculate roll force, roll power during hot rolling in real time. The variables which mainly effect on the roll force, roll power are shape factor, reduction, roll diameter, roll velocity, strip inlet temperature, carbon content of strip and strip-roll contact friction coefficient. Among these variables roll diameter, roll velocity, inlet temperature, carbon content and friction coefficient can be excluded in interpolated model equation by introducing equation of die force(F'), power(p') of the frictionless uniform plane strain compression which can be calculated without iteration. At the case of coulomb friction coefficient of 0.3, we evaluated coefficient of polynomial equations of {{{{ { F} over {F' } }}}}, {{{{ { Pf} over {Pd }, { Pd} over {P' } }}}} from the result of finite element analysis using interpolation. It was found that the change of values of {{{{ { F} over {F' }, { P} over {P' } }}}} with the friction coefficient tend to straight line which slope depend only on shape factor. With these properties, developed model equations could be extended to other values of coulomb friction coefficient. To verify developed roll force, roll power model equation we compared the results from these model equation with the results from these model equation with the results from finite element analysis in factory process condition.

  • PDF

Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model (하중기반 유한요소모델에 의한 FRP 보강 철근콘크리트 기둥의 비선형 해석)

  • Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.529-537
    • /
    • 2013
  • The aim of the current study is to develop a nonlinear isoparametric layered frame finite element (FE) analysis of FRP strengthened reinforced concrete (RC) beam or column members by a force-based FE formulation. In sections, concrete is modeled in the triaxial stress-strain relationship state and the FRP sheet is modeled as layered composite materials in two-dimension. The element stiffness matrix derived by the force-based FE has the force-interpolation functions without assuming the displacement shape functions. A lateral load test of RC column strengthened by GFRP sheets was analyzed by the developed force-based FE model. From comparative studies of the experimental and analysis results, it was shown to compare with the stiffness FE method that the force-based FE analysis could give more accurate predictions in the overall lateral load-deflection response as well as in nonlinear deformations and damages in the column plastic hinge region.

The Analysis of Draw-bead Process by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드공정해석)

  • Jung, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.604-609
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Dynamic characteristics analysis of wind-power generator rotor- bearing system (풍력발전 시스템용 유도발전기의 동특성 해석)

  • 정순철;김덕수;이재응;고장욱;차종환;오시덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1032-1039
    • /
    • 2001
  • In this paper, modal analysis of wind-power generator rotor system was performed by using finite element method. Experimental modal analysis of generator rotor system was performed and the result were compared with analytical ones. Sensitivity method and localized modification method were used to update finite element model. As a result of updating finite element model, errors of natural freguency were reduced within 0.5% and MAC value was improved near by l. Stability characteristics of wind-power generator rotor-bearing system through harmonic analysis about several external force will be analyzed using finite element model.

  • PDF