• Title/Summary/Keyword: Finishing Work Process

Search Result 89, Processing Time 0.03 seconds

Composition of Cotton Textile Dyeing Process Wastewater and its Treatment Characteristics by Ionized Gas (면섬유염색폐수의 공정별 폐수성상과 이온화가스에 의한 처리특성)

  • Lim, Gyeong-Eun;Chung, Paul-gene;Kwon, Ji-Young;Lee, Eun-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.303-308
    • /
    • 2007
  • Three types dyeing wastewater (dark, medium, light color) discharged from cotton textile dyeing with reactive dye was collected at each step of process. Each process dying wastewater was analyzed and treated by ionized gas. The analysis focused on $COD_{Cr}$, SS and color. Bleaching & scouring process wastewater has the highest $COD_{Cr}$ value in the three type dyeing wastewater. SS shows the highest value at dyeing process wastewater in dark and medium color but light color has at finishing process wastewater. The result of process wastewater treatment by ionized gas was that the ionized gas was effective in $COD_{Cr}$ removing of bleaching & scouring process and finishing process wastewater but was not good at dyeing process wastewater. From that result it is estimated that the ionized gas could not work in opening the aromatic ring and react only in aliphatic component of the molecule. Because the surfactants contained in bleaching & scouring process and finishing process wastewater have only one aromatic ring in its molecular structure, in contrast with the reactive dye compounds consist of aromatic rings great part of its molecular structure. The color almost removed in 1.5 hrs reaction time but $COD_{Cr}$ removal effiency was only 30.7% through 3hrs in 1500 mL of total dyeing wastewater treated by 10 L/min ionized gas.

Improvement of machining process for mold parts using on-machine measuring system and CAM automation (기상측정 및 CAM 자동화를 통한 금형 제작 공정 개선)

  • Park, Hae-Woong;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2022
  • In the CNC machining process, problems such as lowering of machine operation rate, setting errors, and machining precision occur due to the increase in setting time and preparation time. These machining errors cause delays in delivery and increase in cost due to an increase in the number of mounting and dismounting of the workpiece, an increase in measurement and reprocessing time, and an increase in the finishing time in the assembly process. Therefore, in this study, by automating the setting of the work piece using OMV (On Machine Verification), which is a meteorological measurement system, the preparation time for machining the work piece and the setting accuracy were improved, the rework rate was reduced, and the mold manufacturing process was shortened. Through the advancement, standardzation, and automation of the mold part manufacturing process, we have improved productivity by minimizing low-value-added repetitive tasks. In addition, the measurement time was reduced by more than 50% and the machining measurement rate was improved by more than 20%, eliminating repetitive work for correcting machining defects, and reducing the work preparation time by more than 15% through automatic setting.

A Process Improvement in Building Constructions using Value Stream Analysis - Focused on slab works - (가치흐름 분석을 통한 건설공사의 공정개선방안 - 슬래브 공사를 중심으로 -)

  • Lee Hyung-Soo;Yoon You-Sang;Suh Sang-Wook;Jang Chan-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.527-530
    • /
    • 2002
  • The purpose of this study is to present an improvement of the form work process. The current slab form work has waste factor by unnecessary process and not complete integration with the finishing process. Therefore the study used value stream analysis methodology for effective improvement of slab form work process. The main contents of the study are as follows; 1) Understanding of non-value adding activities in existing slab form work process 2) Process integration by value stream mapping 3) Effect analysis of time-cost reduction. The study recommends that, as a future research, development of tool and technique for the non-value adding activities are eliminated in building construction.

  • PDF

Constructability Analysis in Aged-Housing Remodeling Demolition Work for Maximizing Waste Recycling (폐기물 재활용성 향상을 위한 리모델링 철거공사의 시공성 평가 및 사례적용)

  • Chae, Seong-Hyun;Kim, Ki-Hyun;Cha, Hee-Sung;Kim, Kyung-Rai;Han, Ju-Yeoun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2010
  • From now on, the aged apartment or house is expected to increase rapidly. So, we have to build a process of remodeling and develop the new technique. Demolition work is needed for systematic plan and management. However, contractors of the remodeling project established a rough plan and did not consider recycling wastes, safety of workers and structural stability of building. Therefore, we need a step to develop a assessment system, verify and make specified. This paper evaluated how much improve on construction speed, work efficiency, intensity of work and influence with another process comparing the existing method with the new demolition method. The qualitative and quantitative assessment system are developed with these output. The case study was carried out experimental group and control group, based on developed assessment system, which have the same condition. The existing method was made up of 3 steps- 1)Demolish windows, doors and iron goods, 2)Demolish indoor and outdoor walls, 3)Drop the waste. The new demolition method was made up of 5 steps- 1)Demolish windows, doors and iron goods, 2)Demolish the ceiling and wall's finishing materials, 3)Demolish the floor's finishing materials, 4)Demolish indoor and outdoor walls, 5)Drop the waste. Work time, idle time, the character of a work unit are analyzed by mock-up test. This study's output is expected to establish a systematic process of new demolition method and based on the maximizing waste recycling work in our construction industry.

Building construction process improvement using prefabricated materia (공업화자재의 활용을 통한 공정합리화)

  • Yoon You-Sang;Lee Hyung-Soo;Suh Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.90-96
    • /
    • 2003
  • The purpose of this study is to present an improvement building construction process by using prefabricated materials. The current slab form work has waste factor by unnecessary process and not complete integration with the finishing process. Therefore the study used value stream analysis methodology for effective improvement of slab form work process. The main contents of the study are as follows; 1) Non-value adding activities were found at existing slab form work process by current state mapping(CSM) 2) Future state mapping(FSM) suggest process Integration to slab form work. 3) Slab form work is analyzed reduction time-cost by prefabricated material. The study recommends that, as a future research, development of tool and technique for the non-value adding activities are eliminated in building construction and application of prefabricated material should be increased.

DESIGN MANAGEMENT FOR CONSTRUCTABILITY REVIEW OF HIGH QUALITY EXPOSED CONCRETE

  • Doo Won Hwang;Young woong Song;Yoon ki Choi;Dong Woo Shin;Jae Youl Chun
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1154-1157
    • /
    • 2005
  • This report is to do design management for constructability review of high quality exposed concrete, which is used increasingly in recent. To secure systematic management at design phase, we reviewed each definition and work at each design phase, we define high quality exposed concrete, a part of architectural concrete, as "an exposed concrete which has well ordered joint & is in pursuit of smooth surface." We reviewed requirements and influential factor to obtain High quality finishing surface and compared construction process of high quality exposed concrete with that of other finishing method. Management method at each design phase for constructability review to meet additional works and requirements is presented.

  • PDF

Farbrication of Repeated 3D Shapes using Magnetorheological Fluid Polishing (자기유변유체 연마공정을 응용한 미세부품의 형상가공)

  • Kim Y.J.;Min B.K.;Lee S.J.;Seok J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1265-1268
    • /
    • 2005
  • Due to the increase of the need for reliable high density information storage devices, the demand for precise machining of the slider in HDD is rapidly growing. The present fabrication process of slider bears some serious problems such as low yield ratio in mass production, which is mainly caused by inefficient machining processes in shaping camber and crown on the slider. In order to increase slider yield ratio in HDD, a new systematic machining process is proposed and developed in this work. This new machining process includes the use of magnetorheological (MR) fluid, a smart polishing material generally used for ultra-fine surface finishing of micro structures. It is shown that the process proposed in this work enables to make camber and crown pattern in the scale of few tens of nanometers. Experiment results shows that the MR polishing can be also used for shaping process of micro structures.

  • PDF

Friction and Wear Characteristics of Gray Cast Iron Surface Processed by Broaching Method (브로칭 가공된 회주철 소재 표면의 마찰 및 마모 특성)

  • Kwon, Mun-Seong;Kang, Kyeong-Hee;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.262-269
    • /
    • 2018
  • In this work the friction and wear characteristics of the gray cast iron surface processed by broaching method, which is widely used in the machinery industry, were investigated. The broaching process is mainly used for mass production because it has high dimensional accuracy and processing speed, but the defects on surface can be easily generated. In order to improve the tribological characteristics, the approach was to reduce the roughness and hardness of the surface by adding a machining process to the broaching specimen. The secondary machining process using abrasive grains produces low roughness and hardness than broaching because it has high tool accuracy and removes the work hardened surface. The friction coefficient and the wear rate were assessed using a reciprocating-type tribotester to analyze the effects of surface finishing on the tribological properties. The friction tests were conducted under dry and lubricated conditions. The test results showed that the reduction of surface roughness and hardness through secondary machining process in lubricated condition improved the friction and wear characteristics. The reason why the same results did not appear in a dry condition was that wear occurred more rapidly than in lubricated condition. Thus, the positive effect of roughness and hardness of the surface obtained through the secondary machining process was not observed.

Development of polishing tool system for robot (로보트용 금형 연마 공구 시스템의 개발)

  • 박종오;이대엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.190-193
    • /
    • 1990
  • Die finishing (polishing and lapping) after NC machining is characterized as one bottleneck process for reducing lead time. For automation of this typical manual work, a flexible polishing tool system using industrial robot has been developed. This tool system has three principal functions in order to achieve reduction of waviness, 3 D.O.F. compliance and constant pressure structure. This polishing tool shows that adaptability to free form surface is increased and programmability to various areas of die surface is also acquired.

  • PDF

The Effect of Dual Wafer Back-Lapping Process on Flexural Strength of Semiconductor Chips (웨이퍼의 2단 이면공정이 반도체 칩의 휨 강도에 미치는 영향)

  • Lee Seong Min
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.183-188
    • /
    • 2005
  • It was studied in this article how the flexural strength of bare silicon chips is influenced by adopting dual wafer back-lapping process. The experimental results showed that an additional finishing process after the conventional grinding process improves the flexural strength of bare chips by more than 2-fold. In particular, this work showed that the proper removal of the grinding marks$(Ra=0.1\;{\mu}m)$existing on the wafer back-surface resulting from the grinding process significantly contiributes to the enhancement of chip strength.